Math 261Spring 2013

Sample Assignment 2

Exercise 1.5.11 Part (1)

(1) $(\forall x \text{ in } U)[R(x) \rightarrow C(x)]$ (2) $(\forall x \text{ in } U)[T(x) \to R(x)]$ Consider an arbitrary a in U. (3) $R(a) \rightarrow C(a)$ (4) $T(a) \rightarrow R(a)$ (5) $T(a) \rightarrow C(a)$ (6) $\neg C(a) \rightarrow \neg T(a)$ (7) $(\forall x \text{ in } U)[\neg C(x) \rightarrow \neg T(x)]$ (6), Universal Generalization

- (1), Universal Instantiation
- (2), Universal Instantiation
- (3), (4), Hypothetical Syllogism
- (5), Contrapositive

Part (2)

(1) $(\forall a \text{ in } V)[N(a) \to B(a)]$	
(2) $(\exists b \text{ in } V)[N(b) \land D(b)]$	
(3) $N(p) \wedge D(p)$	(2), Existential Instantiation
(4) $N(p)$	(3), Simplification
(5) $N(p) \to B(p)$	(1), Universal Instantiation
(6) $B(p)$	(4), (5), Modus Ponens
(7) $D(p)$	(3), Simplification
(8) $B(p) \wedge D(p)$	(6), (7), Adjunction
(9) $(\exists c)[B(c) \land D(c)]$	(8), Existential Generalization

Exercise 1.4.1

Part (1)

From the first premise, we can use Simplification and Addition to deduce $P \lor Q$. Combining this with the second premise yields R.

Part (3)

The contrapositive of the second premise is $F \to G$, and combining this with the first premise gives $E \to G$. We now have $E \lor H, E \to G$, and $H \to I$, so we can use Constructive Dilemma to conclude $G \vee I$.

Some Proofs

The following are all valid proofs of theorem 2.2.2:

Theorem. Let a, b, and c be integers. If a|b and b|c, then a|c.

Proof. Suppose that a|b and b|c. Hence there are integers q and r such that aq = b and br = c. Define an integer k by k = qr. Then ak = a(qr) = (aq)r = br = c. Because ak = c, it follows that a|c.

Theorem. Let a, b, and c be integers. If a|b and b|c, then a|c.

Proof. Suppose that a|b and b|c. By the definition of divides, there exist integers s and t for which as = b and bt = c. Let u = st. Then u is an integer, and au = ast = bt = c, which proves that a|c.

Theorem. Let a, b, and c be integers. If a|b and b|c, then a|c.

Proof. Assuming that a|b and b|c, there must be integers m and n so that am = b and bn = c. Then mn is an integer and a(mn) = (am)n = bn = c, and therefore a|c.

Here is a formal two-column proof of the same theorem:

(1) $a b$	
(2) $b c$	
$(3) \ (\exists x)(ax=b)$	(1), Definition of Divides
$(4) \ (\exists x)(bx=c)$	(2), Definition of Divides
(5) $aq = b$	(3), Existential Instantiation
(6) $br = c$	(4), Existential Instantiation
(7) $a(qr) = (aq)r$	Associative Law
(8) $a(qr) = br$	(5), (7), Substitution
$(9) \ a(qr) = c$	(6), (8), Substitution
$(10) \ (\exists x)(ax = c)$	(9), Existential Generalization
$(11) \ a c$	(10), Definition of Divides