Takehome Midterm Solutions

Math 261, Spring 2013

Problem 1
(a) The square-free integers between 1 and 25 are: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19,
91, 22, 23.

(b) (i)

Theorem. There exists an integer a with the following properties: a is not square-free, and
there does not exist an integer k such that a = k2.

Proof. Let a = 12. Then a is not square-free since 4|a, and a is also not a perfect square. []

(b) (ii)

Theorem. Let a and b be integers, and suppose that b is square-free and alb. Then a is
square-free as well.

Proof. Let n be an integer, and suppose that n?|a. Then there exists an integer j so that
a = jn?. Also, since a|b, there exists an integer k so that b = ka. Then b = k(jn?) = (kj)n?,
which proves that n?|b. Since b is square-free, it follows that n = +1. n

(b)(iii)
Theorem. Let a and b be integers, and suppose that ab is square-free. Then a and b are
relatively prime.

Proof. Let n be an integer, and suppose that n|a and n|b. Then there exist integers j and
k so that a = nj and b = nk. Then ab = (nj)(nk) = n%jk, and thus n?|ab. Since ab is
square-free, it follows that n = £1. n

(b)(iv)
Theorem. For every integer a, there exists an integer b so that a < b and b is not square-free.
Proof. Let a be an integer. There are two cases: either a <1 or a > 1:

o Ifa <1, let b=4. Then b > a and b is not square-free.

e If a > 1, let b = a®. Then clearly a < b. Furthermore, since a?|b and a # +1, the
integer b is not square-free. O



(b)(v)
Theorem. There exists an integer k so that k*> + 1 is not square-free.

Proof. Let k = T7. Then k* + 1 = 50, which is divisible by 25. ]

Problem 2
Theorem. Let A, B, and C' be sets, and suppose that A C B and B C C. Then

C—A=(C-B)U(B-A).

Proof. Let © € C'— A. There are two cases: either x € B or z ¢ B. If x € B, then since
x € C—Aweknow z ¢ A, and therefore v € B—A. If x ¢ B, then since z € C'— A we know
that x € C, and therefore x € C' — B. In either case, it follows that z € (C'— B) U (B — A).
Thus, C — AC (C—B)U(B—-A).

Now let x € (C—B)U(B—A). Again there are two cases: eitherz € C—Borz € B—A.
If x € C'— B, then we know that z € C' and = ¢ B. Since A C B and z ¢ B, it follows that
x ¢ A, and therefore x € C'— A. In the second case, if z € B — A, then we know that z € B
and z ¢ A. Since B C C and z € B, it follows that z € C, and therefore x € C' — A in this
case as well. Thus, (C —B)U(B—A)CC — A.

Therefore, C — A = (C' — B)U (B — A). O
Problem 3
Let A and B be sets, and let f: A — B be a function.
(a)

Theorem. If P,QQ C A, then f(P)— f(Q) C f(P— Q).

Proof. Let b € f(P)— f(Q). Then b € f(P) and b & f(Q). Since b € f(P), we know that
b= f(a) for some a € P. Since b € f(Q), we also know that a € @, and hence a € P — Q.
Since b = f(a), we conclude that b € f(P — Q). Therefore, f(P)— f(Q) C f(P—Q). O

(b)
Theorem. If C, D C B, then f~(C — D) = f~(C) — f~4(D).

Proof. Let a € f~'(C'— D). Then f(a) € C — D, and hence f(a) € C and f(a) € D.
It follows that a € f~}(C) and a € f~'(D), and therefore a € f~'(C) — f~1(D). Thus,
1~ D) € 1(C) - (D).

For the other direction, suppose that a € f~(C) — f~}(D). Then a € f~!(C) and
a ¢ f7Y(D). Since a € f71(C), we know that f(a) € C. Since a € f~Y(D), we know
that f(a) € D. Then f(a) € C' — D, and therefore a € f~}(C — D). Thus, we have that
F1(C) — [ (D) € f(C - D).

Therefore f~1(C' — D) = f~1(C) — f~1(D). O



