Takehome Midterm Solutions

Math 261, Spring 2013

Problem 1

(a) The square-free integers between 1 and 25 are: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23.

(b)(i)

Theorem. There exists an integer a with the following properties: a is not square-free, and there does not exist an integer k such that $a = k^2$.

Proof. Let a = 12. Then a is not square-free since 4|a, and a is also not a perfect square. \Box

(b)(ii)

Theorem. Let a and b be integers, and suppose that b is square-free and a|b. Then a is square-free as well.

Proof. Let n be an integer, and suppose that $n^2|a$. Then there exists an integer j so that $a = jn^2$. Also, since a|b, there exists an integer k so that b = ka. Then $b = k(jn^2) = (kj)n^2$, which proves that $n^2|b$. Since b is square-free, it follows that $n = \pm 1$.

(b)(iii)

Theorem. Let a and b be integers, and suppose that ab is square-free. Then a and b are relatively prime.

Proof. Let n be an integer, and suppose that n|a and n|b. Then there exist integers j and k so that a = nj and b = nk. Then $ab = (nj)(nk) = n^2jk$, and thus $n^2|ab$. Since ab is square-free, it follows that $n = \pm 1$.

(b)(iv)

Theorem. For every integer a, there exists an integer b so that a < b and b is not square-free.

Proof. Let a be an integer. There are two cases: either $a \leq 1$ or a > 1:

- If $a \leq 1$, let b = 4. Then b > a and b is not square-free.
- If a > 1, let $b = a^2$. Then clearly a < b. Furthermore, since $a^2|b$ and $a \neq \pm 1$, the integer b is not square-free.

(b)(v)

Theorem. There exists an integer k so that $k^2 + 1$ is not square-free.

Proof. Let k = 7. Then $k^2 + 1 = 50$, which is divisible by 25.

Problem 2

Theorem. Let A, B, and C be sets, and suppose that $A \subseteq B$ and $B \subseteq C$. Then

$$C - A = (C - B) \cup (B - A).$$

Proof. Let $x \in C - A$. There are two cases: either $x \in B$ or $x \notin B$. If $x \in B$, then since $x \in C - A$ we know $x \notin A$, and therefore $x \in B - A$. If $x \notin B$, then since $x \in C - A$ we know that $x \in C$, and therefore $x \in C - B$. In either case, it follows that $x \in (C - B) \cup (B - A)$. Thus, $C - A \subseteq (C - B) \cup (B - A)$.

Now let $x \in (C-B) \cup (B-A)$. Again there are two cases: either $x \in C-B$ or $x \in B-A$. If $x \in C-B$, then we know that $x \in C$ and $x \notin B$. Since $A \subseteq B$ and $x \notin B$, it follows that $x \notin A$, and therefore $x \in C-A$. In the second case, if $x \in B-A$, then we know that $x \in B$ and $x \notin A$. Since $B \subseteq C$ and $x \in B$, it follows that $x \in C$, and therefore $x \in C-A$ in this case as well. Thus, $(C-B) \cup (B-A) \subseteq C-A$.

Therefore, $C - A = (C - B) \cup (B - A)$.

Problem 3

Let A and B be sets, and let $f: A \to B$ be a function.

(a)

Theorem. If $P, Q \subseteq A$, then $f(P) - f(Q) \subseteq f(P - Q)$.

Proof. Let $b \in f(P) - f(Q)$. Then $b \in f(P)$ and $b \notin f(Q)$. Since $b \in f(P)$, we know that b = f(a) for some $a \in P$. Since $b \notin f(Q)$, we also know that $a \notin Q$, and hence $a \in P - Q$. Since b = f(a), we conclude that $b \in f(P - Q)$. Therefore, $f(P) - f(Q) \subseteq f(P - Q)$. \Box

(b)

Theorem. If $C, D \subseteq B$, then $f^{-1}(C - D) = f^{-1}(C) - f^{-1}(D)$.

Proof. Let $a \in f^{-1}(C - D)$. Then $f(a) \in C - D$, and hence $f(a) \in C$ and $f(a) \notin D$. It follows that $a \in f^{-1}(C)$ and $a \notin f^{-1}(D)$, and therefore $a \in f^{-1}(C) - f^{-1}(D)$. Thus, $f^{-1}(C - D) \subseteq f^{-1}(C) - f^{-1}(D)$.

For the other direction, suppose that $a \in f^{-1}(C) - f^{-1}(D)$. Then $a \in f^{-1}(C)$ and $a \notin f^{-1}(D)$. Since $a \in f^{-1}(C)$, we know that $f(a) \in C$. Since $a \notin f^{-1}(D)$, we know that $f(a) \notin D$. Then $f(a) \in C - D$, and therefore $a \in f^{-1}(C - D)$. Thus, we have that $f^{-1}(C) - f^{-1}(D) \subseteq f^{-1}(C - D)$.

Therefore $f^{-1}(C - D) = f^{-1}(C) - f^{-1}(D)$.

