
Takehome Midterm Solutions

Math 261, Spring 2013

Problem 1
(a) The square-free integers between 1 and 25 are: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19,
21, 22, 23.

(b)(i)

Theorem. There exists an integer a with the following properties: a is not square-free, and
there does not exist an integer k such that a = k2.

Proof. Let a = 12. Then a is not square-free since 4|a, and a is also not a perfect square.

(b)(ii)

Theorem. Let a and b be integers, and suppose that b is square-free and a|b. Then a is
square-free as well.

Proof. Let n be an integer, and suppose that n2|a. Then there exists an integer j so that
a = jn2. Also, since a|b, there exists an integer k so that b = ka. Then b = k(jn2) = (kj)n2,
which proves that n2|b. Since b is square-free, it follows that n = ±1.

(b)(iii)

Theorem. Let a and b be integers, and suppose that ab is square-free. Then a and b are
relatively prime.

Proof. Let n be an integer, and suppose that n|a and n|b. Then there exist integers j and
k so that a = nj and b = nk. Then ab = (nj)(nk) = n2jk, and thus n2 | ab. Since ab is
square-free, it follows that n = ±1.

(b)(iv)

Theorem. For every integer a, there exists an integer b so that a < b and b is not square-free.

Proof. Let a be an integer. There are two cases: either a ≤ 1 or a > 1:

• If a ≤ 1, let b = 4. Then b > a and b is not square-free.

• If a > 1, let b = a2. Then clearly a < b. Furthermore, since a2|b and a ̸= ±1, the
integer b is not square-free.



(b)(v)

Theorem. There exists an integer k so that k2 + 1 is not square-free.

Proof. Let k = 7. Then k2 + 1 = 50, which is divisible by 25.

Problem 2

Theorem. Let A, B, and C be sets, and suppose that A ⊆ B and B ⊆ C. Then

C − A = (C −B) ∪ (B − A).

Proof. Let x ∈ C − A. There are two cases: either x ∈ B or x /∈ B. If x ∈ B, then since
x ∈ C−A we know x /∈ A, and therefore x ∈ B−A. If x /∈ B, then since x ∈ C−A we know
that x ∈ C, and therefore x ∈ C −B. In either case, it follows that x ∈ (C −B)∪ (B −A).
Thus, C − A ⊆ (C −B) ∪ (B − A).

Now let x ∈ (C−B)∪(B−A). Again there are two cases: either x ∈ C−B or x ∈ B−A.
If x ∈ C −B, then we know that x ∈ C and x /∈ B. Since A ⊆ B and x /∈ B, it follows that
x /∈ A, and therefore x ∈ C −A. In the second case, if x ∈ B−A, then we know that x ∈ B
and x /∈ A. Since B ⊆ C and x ∈ B, it follows that x ∈ C, and therefore x ∈ C − A in this
case as well. Thus, (C −B) ∪ (B − A) ⊆ C − A.

Therefore, C − A = (C −B) ∪ (B − A).

Problem 3

Let A and B be sets, and let f : A → B be a function.

(a)

Theorem. If P,Q ⊆ A, then f(P )− f(Q) ⊆ f(P −Q).

Proof. Let b ∈ f(P ) − f(Q). Then b ∈ f(P ) and b ̸∈ f(Q). Since b ∈ f(P ), we know that
b = f(a) for some a ∈ P . Since b ̸∈ f(Q), we also know that a ̸∈ Q, and hence a ∈ P − Q.
Since b = f(a), we conclude that b ∈ f(P −Q). Therefore, f(P )− f(Q) ⊆ f(P −Q).

(b)

Theorem. If C,D ⊆ B, then f−1(C −D) = f−1(C)− f−1(D).

Proof. Let a ∈ f−1(C − D). Then f(a) ∈ C − D, and hence f(a) ∈ C and f(a) ̸∈ D.
It follows that a ∈ f−1(C) and a ̸∈ f−1(D), and therefore a ∈ f−1(C) − f−1(D). Thus,
f−1(C −D) ⊆ f−1(C)− f−1(D).

For the other direction, suppose that a ∈ f−1(C) − f−1(D). Then a ∈ f−1(C) and
a ̸∈ f−1(D). Since a ∈ f−1(C), we know that f(a) ∈ C. Since a ̸∈ f−1(D), we know
that f(a) ̸∈ D. Then f(a) ∈ C − D, and therefore a ∈ f−1(C − D). Thus, we have that
f−1(C)− f−1(D) ⊆ f−1(C −D).

Therefore f−1(C −D) = f−1(C)− f−1(D).


