Math 315 Homework 7 Due Friday, April 7

Solutions must be written in ET_EX . You are encouraged to work with others on the assignment, but you should write up your own solutions independently. You should reference all of your sources, including your collaborators.

- 1. Ann and Bob are playing the following 2-player game:
 - First, they both choose "Heads" or "Tails" and reveal their choice simultaneously.
 - Then, if both chose "Heads" or both chose "Tails", Ann pays Bob \$20. If Bob chooses "Heads" and Ann chooses "Tails", then Bob pays Ann \$30. If Bob chooses "Tails" and Ann chooses "Heads", then Bob pays Ann \$10.
 - (a) Assume that both players are risk-neutral (so their utilities can simply equal the monetary value). Write this game as a zero-sum game in strategic form.
 - (b) What are \underline{v} and \overline{v} in pure strategies?
 - (c) Find the value of the game in mixed strategies.
 - (d) What is Ann's optimal strategy?
 - (e) What is Bob's optimal strategy?
 - (f) If both players use their optimal strategy, what is Ann's expected payoff and what is Bob's expected payoff?
- 2. Consider the following 2-player zero-sum game, in which a, b, c, and d are constants:

	Player 2				
		Strategy 1	Strategy 2		
Player 1	Strategy 1	a	b		
	Strategy 2	С	d		

Suppose that a > b, a > c, d > b, and d > c (this implies that the game does not have a value in pure strategies).

- (a) Determine Player 1's optimal mixed strategy in terms of a, b, c, and d. (Recall that an optimal strategy in a zero-sum game is a strategy that corresponds to the value of the game).
- (b) Determine Player 2's optimal mixed strategy in terms of a, b, c, and d.
- (c) What is the value of the game (in mixed strategies) in terms of a, b, c, and d?

3. A 2-player zero-sum game is called a *fair game* if the value of the game (in mixed strategies) is 0. Consider the 2-player zero-sum game:

	Player 2				
		C	D		
Plaver 1	A	-5	x		
i layer i	B	4	-3		

Find x so that the game is a fair game.

4. Consider the following zero-sum game:

	Player 2				
		D	E	F	
	A	-2	1	2	
Player 1	B	2	-1	0	
	C	1	0	-2	

- (a) What are \underline{v} and \overline{v} in pure strategies?
- (b) Formulate a linear programming problem to find \underline{v} in mixed strategies.
- (c) Formulate a linear programming problem to find \overline{v} in mixed strategies.
- (d) Use Excel to solve the linear program from part (b). What is \underline{v} ? What is Player 1's optimal strategy?
- (e) Use Excel to solve the linear program from part (c). What is \overline{v} ? What is Player 2's optimal strategy?
- (f) If both players use their optimal strategy, what is Player 1's expected payoff and what is Player 2's expected payoff?