Math 316: Answers to Practice Problems

- 1. (a) f = (1245)(3)(6) and g = (16)(25)(34)
 - (b) fg = (156)(234)
 - (c) gf = (162)(354)
- 2. 2(n-2)(n-3)!
- 3. Let $n \in \mathbb{N}$. Then:

$$c(n, n-2) = \frac{1}{2} \binom{n}{2} \binom{n-2}{2} + 2 \binom{n}{3}$$

Proof. We know that c(n, n-2) counts the number of permutations on n elements that have n-2 cycles. These n-2 cycles would either consist of two 2-cycles and n-4 singletons or one 3-cycle and n-3 singletons.

There are $\frac{1}{2}\binom{n}{2}\binom{n-2}{2}$ ways to create two 2-cycles: $\binom{n}{2}$ chooses the 2 elements of one 2-cycle; $\binom{n-2}{2}$ chooses the 2 elements for the second 2-cycle, and then we divide by 2, since the order of the 2-cycles does not matter.

There are $2\binom{n}{3}$ ways to create the 3-cycle: there are $\binom{n}{3}$ ways to choose the 3 elements a, b, and c of the 3-cycle, and then there are two possible 3-cycles from those three elements, (abc) or (acb).

Therefore, there are a total of $\frac{1}{2}\binom{n}{2}\binom{n-2}{2}+2\binom{n}{3}$ permuations on n elements that have n-2 cycles.

4.
$$3 - 3x + x(x - 1) + 2x(x - 1)(x - 2)$$

5.
$$1000 - (250 + 200 + 166) + (50 + 83 + 33) - 16 = 534$$

6.
$$\frac{2x^2}{(1-x)^3}$$

7. (a)
$$\frac{x}{(1-x)^2}$$

(b)
$$a_n = n$$

8. (a)
$$\frac{1}{(1-x)^2(1+x)}$$

(b)
$$a_n = \frac{1}{4} + \frac{1}{2}(n+1) + \frac{1}{4}(-1)^n$$

9. (a)
$$\frac{1+x}{1-x-6x^2}$$

(b)
$$a_n = \frac{4}{5} \cdot 3^n + \frac{1}{5} \cdot (-2)^n$$

10.
$$\frac{1}{1-2x} + \frac{x}{(1-2x)(1-x)^2}$$

11. (a)
$$\frac{1}{1-x}$$

(b)
$$e^{-x}$$

(c)
$$e^{2x}$$

12. (a)
$$a_n = (-1)^n + 3 \cdot 2^n$$

(b)
$$b_n = 3^n \cdot n!$$

- 13. (a) The graphs are not isomorphic. In the first graph, all vertices have degree four or less, and the second graph has a vertex of degree 5.
 - (b) The two graphs are isomorphic, as shown in the following labeling:

14. $\frac{n!}{2}$ (Note that all such graphs are paths.)

15. (a)
$$\begin{bmatrix} 3 & -1 & -1 & -1 & 0 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

(b) 75