
Math 316: Answers to Practice Problems

1. There are 24 · 60 = 1440 minutes in a day. With 1500 takeoffs, by the Pigeonhole
Principle, there must be one minute during which two planes are taking off.

2. Theorem. Let a0 = 3 and let an+1 =
√
an + 7 if n > 0. Then, 3 < an < 4 for all

n > 0.

Proof. We will prove this by induction on n.

Base Case: We have that a1 =
√

10. Then 3 <
√

10 < 4.

Induction Step: Assume that for some n > 0, we have that 3 < an < 4. Since 3 < an,
we have that 10 < an + 7, and then

√
10 <

√
an + 7. Thus,

√
10 < an+1. Since

3 <
√

10, we have that 3 < an+1. Similarly, since an < 4, we have that an + 7 < 11,
and then

√
an + 7 <

√
11. Thus, an+1 <

√
11. Since

√
11 < 4, we have that an+1 < 4.

Thus, by induction 3 < an < 4 for all n > 0.

3. (a1) 34 = 81

(a2) 3 · 4!

2! 1! 1!
= 36

(b) 9 · 8 · 7 · 1 + 8 · 8 · 7 · 1 = 952

4.
9!

1! 2! 1! 2! 3!
= 15,120

5.
7!

2! 2! 1! 1! 1!
− 2 · 6!

2! 2! 1! 1!
= 900

6. 25 = 32

7. (a)

(
6 + 15− 1

15

)
=

(
20

15

)
= 15,504

(b)

(
6 + 9− 1

9

)
=

(
14

9

)
= 2002

(c)

(
6 + 12− 1

12

)
=

(
17

12

)
= 6188
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8. (a)

(
9
5

)(
12
5

) =
126

792
=

63

396

(b)

(
4
3

)(
8
2

)(
12
5

) =
112

792
=

14

99

(c)

(
5
0

)(
7
5

)
+
(
5
1

)(
7
4

)
+
(
5
2

)(
7
3

)(
12
5

) =
546

792
=

273

396

9. (a)
4

36
=

1

9

(b)
11

36

(c)
30

36
=

5

6

10. (a)

(
12

5

)
35(−2)7 = −24,634,368

(b)

(
6

3, 2, 1

)
23(−1)2 =

6!

3! 2! 1!
· 23(−1)2 = 480

(c)

(
10

3, 7, 0

)
=

10!

3! 7!
= 120

11. 1− 4

5
x− 2

25
x2 − 4

125
x3 − 11

625
x4

12. Theorem. Let k, n ∈ N with n ≥ k. Then,

k

(
n

k

)
= n

(
n− 1

k − 1

)
Proof. Both sides count the number of ways to choose a committee of k people from
n people and to choose a president of the committee (with the president being one of
the people on the committee).

On the left-hand side, we first choose the committee (there are
(
n
k

)
ways to choose the

k people to form the committee), and then we choose the president from among the k
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people on the committee (so there are k choices for the president of the committee).
Thus, there are k

(
n
k

)
ways to choose the committee and the president.

On the right-hand side, we first choose the president from the n people (there are n
ways to do this), and then we choose the remaining k − 1 people on the committee
from among the n− 1 remaining people (there are

(
n−1
k−1

)
ways to do this). Thus, there

are n
(
n−1
k−1

)
ways to choose the committee and the president.

Therefore, k
(
n
k

)
= n

(
n−1
k−1

)
.

13. Theorem. Let n ∈ N. Then,

3n =
n∑

k=1

(
n

k

)
2k

Proof. Recall the Binomial Theorem:

(x + y)n =
n∑

k=1

(
n

k

)
xkyn−k

Let x = 2 and y = 1. Then:

3n =
n∑

k=1

(
n

k

)
2k

14. 213 = 8192

15. S(4, 1) + 2 · S(4, 2) + 3 · S(4, 3) + 4 · S(4, 4) = 1 + 7 · 2 + 6 · 3 + 4 · 1 = 37

16. Let n ∈ N. Then,

S(n, n− 2) =

(
n

3

)
+ 3

(
n

4

)
Proof. We know that S(n, n−2) counts the number of partitions of the set {1, 2, 3, . . . , n}
into n− 2 blocks. When we partition {1, 2, 3, . . . , n} into n− 2 blocks, we could either
partition the set into n − 3 singletons and one set with three elements, or we could
partition the set into n− 4 singletons and two doubletons. There are

(
n
3

)
ways to par-

tition into n− 3 singletons and one set with three elements (since you need to choose
the three elements to be in one set).

To partition into n− 4 singletons and two doubletons, we need to first choose the four
elements to be in the doubletons (there are

(
n
4

)
ways to choose these), and then we
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need to decide how to divide up the four elements into doubletons (there are three ways
to partition four elements into doubletons: {a, b}{c, d}, {a, c}{b, d}, and {a, d}{b, c}).
Thus, there are 3

(
n
4

)
ways to partition into n− 4 singletons and two doubletons.

Therefore, there are a total of
(
n
3

)
+ 3
(
n
4

)
ways to partition the set {1, 2, 3, . . . , n} into

n− 2 blocks.

4


