Math 316: Answers to Practice Problems

- 1. There are $24 \cdot 60 = 1440$ minutes in a day. With 1500 takeoffs, by the Pigeonhole Principle, there must be one minute during which two planes are taking off.
- 2. Theorem. Let $a_0 = 3$ and let $a_{n+1} = \sqrt{a_n + 7}$ if n > 0. Then, $3 < a_n < 4$ for all n > 0.

Proof. We will prove this by induction on n.

Base Case: We have that $a_1 = \sqrt{10}$. Then $3 < \sqrt{10} < 4$.

Induction Step: Assume that for some n > 0, we have that $3 < a_n < 4$. Since $3 < a_n$, we have that $10 < a_n + 7$, and then $\sqrt{10} < \sqrt{a_n + 7}$. Thus, $\sqrt{10} < a_{n+1}$. Since $3 < \sqrt{10}$, we have that $3 < a_{n+1}$. Similarly, since $a_n < 4$, we have that $a_n + 7 < 11$, and then $\sqrt{a_n + 7} < \sqrt{11}$. Thus, $a_{n+1} < \sqrt{11}$. Since $\sqrt{11} < 4$, we have that $a_{n+1} < 4$. Thus, by induction $3 < a_n < 4$ for all n > 0.

- 3. (a1) $3^4 = 81$
 - (a2) $3 \cdot \frac{4!}{2! \ 1! \ 1!} = 36$ (b) $9 \cdot 8 \cdot 7 \cdot 1 + 8 \cdot 8 \cdot 7 \cdot 1 = 952$

4.
$$\frac{9!}{1! \ 2! \ 1! \ 2! \ 3!} = 15,120$$

5.
$$\frac{7!}{2! \ 2! \ 1! \ 1! \ 1!} - 2 \cdot \frac{6!}{2! \ 2! \ 1! \ 1!} = 900$$

6.
$$2^{5} = 32$$

7. (a)
$$\binom{6+15-1}{15} = \binom{20}{15} = 15,504$$

(b)
$$\binom{6+9-1}{9} = \binom{14}{9} = 2002$$

(c)
$$\binom{6+12-1}{12} = \binom{17}{12} = 6188$$

8. (a)
$$\frac{\binom{9}{5}}{\binom{12}{5}} = \frac{126}{792} = \frac{63}{396}$$

(b) $\frac{\binom{4}{3}\binom{9}{2}}{\binom{12}{5}} = \frac{112}{792} = \frac{14}{99}$
(c) $\frac{\binom{5}{0}\binom{7}{5} + \binom{5}{1}\binom{7}{4} + \binom{5}{2}\binom{7}{3}}{\binom{12}{5}} = \frac{546}{792} = \frac{273}{396}$
9. (a) $\frac{4}{36} = \frac{1}{9}$
(b) $\frac{11}{36}$
(c) $\frac{30}{36} = \frac{5}{6}$
10. (a) $\binom{12}{5}3^5(-2)^7 = -24,634,368$
(b) $\binom{6}{3,2,1}2^3(-1)^2 = \frac{6!}{3!2!1!} \cdot 2^3(-1)^2 = 480$
(c) $\binom{10}{3,7,0} = \frac{10!}{3!7!} = 120$
11. $1 - \frac{4}{5}x - \frac{2}{25}x^2 - \frac{4}{125}x^3 - \frac{11}{625}x^4$

12. Theorem. Let $k, n \in \mathbb{N}$ with $n \ge k$. Then,

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

Proof. Both sides count the number of ways to choose a committee of k people from n people and to choose a president of the committee (with the president being one of the people on the committee).

On the left-hand side, we first choose the committee (there are $\binom{n}{k}$ ways to choose the k people to form the committee), and then we choose the president from among the k

people on the committee (so there are k choices for the president of the committee). Thus, there are $k\binom{n}{k}$ ways to choose the committee and the president.

On the right-hand side, we first choose the president from the *n* people (there are *n* ways to do this), and then we choose the remaining k - 1 people on the committee from among the n - 1 remaining people (there are $\binom{n-1}{k-1}$ ways to do this). Thus, there are $n\binom{n-1}{k-1}$ ways to choose the committee and the president.

Therefore, $k\binom{n}{k} = n\binom{n-1}{k-1}$.

13. Theorem. Let $n \in \mathbb{N}$. Then,

$$3^n = \sum_{k=1}^n \binom{n}{k} 2^k$$

Proof. Recall the Binomial Theorem:

$$(x+y)^n = \sum_{k=1}^n \binom{n}{k} x^k y^{n-k}$$

Let x = 2 and y = 1. Then:

$$3^n = \sum_{k=1}^n \binom{n}{k} 2^k$$

_		_
L		1
		1
L		1
		_

14. $2^{13} = 8192$

- 15. $S(4,1) + 2 \cdot S(4,2) + 3 \cdot S(4,3) + 4 \cdot S(4,4) = 1 + 7 \cdot 2 + 6 \cdot 3 + 4 \cdot 1 = 37$
- 16. Let $n \in \mathbb{N}$. Then,

$$S(n, n-2) = \binom{n}{3} + 3\binom{n}{4}$$

Proof. We know that S(n, n-2) counts the number of partitions of the set $\{1, 2, 3, ..., n\}$ into n-2 blocks. When we partition $\{1, 2, 3, ..., n\}$ into n-2 blocks, we could either partition the set into n-3 singletons and one set with three elements, or we could partition the set into n-4 singletons and two doubletons. There are $\binom{n}{3}$ ways to partition into n-3 singletons and one set with three elements (since you need to choose the three elements to be in one set).

To partition into n-4 singletons and two doubletons, we need to first choose the four elements to be in the doubletons (there are $\binom{n}{4}$ ways to choose these), and then we

_	

need to decide how to divide up the four elements into doubletons (there are three ways to partition four elements into doubletons: $\{a, b\}\{c, d\}, \{a, c\}\{b, d\}, \text{ and } \{a, d\}\{b, c\}$). Thus, there are $3\binom{n}{4}$ ways to partition into n - 4 singletons and two doubletons.

Therefore, there are a total of $\binom{n}{3} + 3\binom{n}{4}$ ways to partition the set $\{1, 2, 3, \ldots, n\}$ into n-2 blocks.