Math 316 Homework 1 Due Friday, February 12

Solutions must be written in ET_EX . You are encouraged to work with others on the assignment, but you should write up your own solutions independently. You should reference all of your sources, including your collaborators.

- 1. Show that if n + 1 distinct integers are chosen from the set $\{1, 2, ..., 3n\}$, then there are always two which differ by at most 2.
- 2. (Exercise 24, Chapter 1) Find all 4-tuples (a, b, c, d) of distinct positive integers so that a < b < c < d and

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} = 1$$

Hint: Look at the solution to Exercise 2 in Chapter 1.

- 3. Let S be a set of 17 points inside a cube of side length 1. Prove that there exists a sphere of radius 1/2 which encloses at least three of the points.
- 4. (Exercise 19, Chapter 2) Let $a_0 = 3$ and let $a_n = a_0 \cdot a_1 \cdot a_2 \cdot a_3 \cdots a_{n-1} + 2$ for $n \ge 1$. Prove that $a_n = 2^{2^n} + 1$.
- 5. Let F_0, F_1, F_2, \ldots be the sequence defined by $F_0 = 0$ and $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$. (Thus, F_n is the *n*th Fibonacci number.) By examining the terms of the Fibonacci sequence, make a conjecture about when F_n is divisible by 7 and then prove your conjecture.

Extra Credit:

Show that for any set consisting of 52 integers, there exist two integers a and b in the set such that $a^2 - b^2$ is divisible by 100.