Show all appropriate work. Variables may represent any real number.

1. (a) Suppose M is a 20×20 matrix that can be described as a block matrix

$$M = \left(\begin{array}{cc} A & 0\\ X & B \end{array}\right),$$

where A and B are invertible matrices and 0 is a matrix of appropriate size with every entry zero. Write a formula for M^{-1} as a block matrix.

(b) Write the 3×3 matrix E such that EA is the matrix obtained from A by subtracting row 1 from row 3, and leaving rows 1 and 2 unchanged.

2. Let

$$A = \left(\begin{array}{rrr} 1 & 2 & 2 \\ 2 & 1 & 4 \\ 3 & 0 & 1 \end{array} \right).$$

- (a) Put A in upper triangular form
- (b) Factor A as A = LU.
- (c) What is the determinant of A?
- 3. $T : \mathbf{x} \mapsto \mathbf{y}$ means that the function takes the input \mathbf{x} to the output \mathbf{y} . Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that $T : \begin{pmatrix} 4 \\ 2 \end{pmatrix} \mapsto \begin{pmatrix} 2 \\ 6 \end{pmatrix}$ and $T : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 4 \\ 2 \end{pmatrix}$. Let A denote the standard matrix for T (this is the matrix such that $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} .).
 - (a) The input-output data can be formulated as a matrix equation AB = C, whith $B = \begin{pmatrix} 41\\ 21 \end{pmatrix}$. What is the matrix C?
 - (b) Compute A.
- 4. Which of the following matrices are invertible? No justification required.

$$A = \begin{pmatrix} 4 & 7 \\ 3 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 8 & -3 & 0 \\ 0 & 6 & 7 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & 0 & 8 \\ -1 & 7 & 6 & 0 \\ 2.1 & 0 & 4 & 4 \end{pmatrix} \quad D = \begin{pmatrix} 2 & 4 & 1 & 3 & 8 \\ 7 & 1 & 0 & 6 & 0 \\ 0 & 5 & 2 & 1 & 1 \end{pmatrix}$$

- 5. For the following, answer TRUE or FALSE. No explanation required.
 - (a) If A, B are matrices and column 1 of B is the zero column, then column 1 of AB is the zero column.
 - (b) If $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3}$ are vector in \mathbb{R}^3 , and none of them are scalar multiples of the others, then the set $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is linearly independent.
 - (c) If A, B, C are matrices such that AB = AC, then B = C.
 - (d) Suppose A is an $m \times n$ matrix, **b** is a column vector in \mathbb{R}^m , and the vectors **u** and **v** in \mathbb{R}^n are solutions to the equation $A\mathbf{x} = \mathbf{b}$. Then there is a vector **w** that is a solution to $A\mathbf{x} = \mathbf{0}$ such that $\mathbf{v} = \mathbf{u} + \mathbf{w}$.