MATH 242: Practice Exam 1

Show all appropriate work. Variables may represent any real number.

1. (a) Suppose M is a 20×20 matrix that can be described as a block matrix

$$
M=\left(\begin{array}{cc}
A & 0 \\
X & B
\end{array}\right),
$$

where A and B are invertible matrices and 0 is a matrix of appropriate size with every entry zero. Write a formula for M^{-1} as a block matrix.
(b) Write the 3×3 matrix E such that $E A$ is the matrix obtained from A by subtracting row 1 from row 3 , and leaving rows 1 and 2 unchanged.
2. Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 4 \\
3 & 0 & 1
\end{array}\right)
$$

(a) Put A in upper triangular form
(b) Factor A as $A=L U$.
(c) What is the determinant of A ?
3. $T: \mathbf{x} \mapsto \mathbf{y}$ means that the function takes the input \mathbf{x} to the output \mathbf{y}. Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation such that $T:\binom{4}{2} \mapsto\binom{2}{6}$ and $T:\binom{1}{1} \mapsto\binom{4}{2}$. Let A denote the standard matrix for T (this is the matrix such that $T(\mathbf{x})=A \mathbf{x}$ for all x. .).
(a) The input-output data can be formulated as a matrix equation $A B=C$, whith $B=\binom{41}{21}$. What is the matrix C ?
(b) Compute A.
4. Which of the following matrices are invertible? No justification required.

$$
A=\left(\begin{array}{ll}
4 & 7 \\
3 & 5
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
8 & -3 & 0 \\
0 & 6 & 7
\end{array}\right) \quad C=\left(\begin{array}{cccc}
1 & 2 & 0 & 4 \\
2 & 4 & 0 & 8 \\
-1 & 7 & 6 & 0 \\
2.1 & 0 & 4 & 4
\end{array}\right) \quad D=\left(\begin{array}{ccccc}
2 & 4 & 1 & 3 & 8 \\
7 & 1 & 0 & 6 & 0 \\
0 & 5 & 2 & 1 & 1
\end{array}\right)
$$

5. For the following, answer TRUE or FALSE. No explanation required.
(a) If A, B are matrices and column 1 of B is the zero column, then column 1 of $A B$ is the zero column.
(b) If $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$ are vector in \mathbb{R}^{3}, and none of them are scalar multiples of the others, then the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is linearly independent.
(c) If A, B, C are matrices such that $A B=A C$, then $B=C$.
(d) Suppose A is an $m \times n$ matrix, \mathbf{b} is a column vector in \mathbb{R}^{m}, and the vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} are solutions to the equation $A \mathbf{x}=\mathbf{b}$. Then there is a vector \mathbf{w} that is a solution to $A \mathbf{x}=\mathbf{0}$ such that $\mathbf{v}=\mathbf{u}+\mathbf{w}$.
