Show all appropriate work.

1. Write how long it took you to complete the assignment.
2. Show that for two vectors \mathbf{u} and \mathbf{v} making an angle θ with one another

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\| \cdot\|\mathbf{v}\| \cdot \cos (\theta)
$$

3. Problems from the book: (I have taken these problems from the 4th edition because I don't have my copy of the 5th yet, so I have attached a scan of the book problems to this pdf.)
(a) Section 1.1: 1, 3, 9, 10, 12, 13, 16.
(b) Section 1.2: 4, 5, 12, 13, 16, 19.

Problem Set 1.1

Problems 1-9 are about addition of vectors and linear combinations.

1 Describe geometrically (line, plane, or all of \mathbf{R}^{3}) all linear combinations of
(a) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]$
(c) $\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right]$

2 Draw $v=\left[\begin{array}{l}4 \\ 1\end{array}\right]$ and $w=\left[\begin{array}{r}-2 \\ 2\end{array}\right]$ and $v+w$ and $v-w$ in a single $x y$ plane.
3 If $v+w=\left[\begin{array}{l}5 \\ 1\end{array}\right]$ and $v-w=\left[\begin{array}{l}1 \\ 5\end{array}\right]$, compute and draw v and w.
4 From $v=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $w=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, find the components of $3 v+w$ and $c v+d w$.
5 Compute $u+v+w$ and $2 u+2 v+w$. How do you know \boldsymbol{u}, v, w lie in a plane?

$$
\text { In a plane } \quad u=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v=\left[\begin{array}{r}
-3 \\
1 \\
-2
\end{array}\right], \quad w=\left[\begin{array}{r}
2 \\
-3 \\
-1
\end{array}\right] .
$$

6 Every combination of $v=(1,-2,1)$ and $w=(0,1,-1)$ has components that add to \qquad . Find c and d so that $c \boldsymbol{v}+d \boldsymbol{w}=(3,3,-6)$.

7 In the $x y$ plane mark all nine of these linear combinations:

$$
c\left[\begin{array}{l}
2 \\
1
\end{array}\right]+d\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { with } \quad c=0,1,2 \quad \text { and } \quad d=0,1,2
$$

8 The parallelogram in Figure 1.1 has diagonal $v+w$. What is its other diagonal? What is the sum of the two diagonals? Draw that vector sum.
9 If three corners of a parallelogram are (1, 1), (4,2), and (1,3), what are all three of the possible fourth corners? Draw two of them.

Problems 10-14 are about special vectors on cubes and clocks in Figure 1.4.

10 Which point of the cube is $\boldsymbol{i}+\boldsymbol{j}$? Which point is the vector sum of $\boldsymbol{i}=(1,0,0)$ and $\boldsymbol{j}=(0,1,0)$ and $\boldsymbol{k}=(0,0,1)$? Describe all points (x, y, z) in the cube.
11 Four corners of the cube are $(0,0,0),(1,0,0),(0,1,0),(0,0,1)$. What are the other four corners? Find the coordinates of the center point of the cube. The center points of the six faces are \qquad .
12 How many corners does a cube have in 4 dimensions? How many 3D faces? How many edges? A typical corner is $(0,0,1,0)$. A typical edge goes to $(0,1,0,0)$.

Figure 1.4: Unit cube from i, j, k and twelve clock vectors.

13 (a) What is the sum V of the twelve vectors that go from the center of a clock to the hours 1:00, 2:00, $\ldots, 12: 00$?
(b) If the 2:00 vector is removed, why do the 11 remaining vectors add to 8:00?
(c) What are the components of that 2:00 vector $v=(\cos \theta, \sin \theta)$?

14 Suppose the twelve vectors start from 6:00 at the bottom instead of $(0,0)$ at the center. The vector to $12: 00$ is doubled to $(0,2)$. Add the new twelve vectors.

Problems 15-19 go further with linear combinations of v and w (Figure 1.5a).

15 Figure 1.5a shows $\frac{1}{2} v+\frac{1}{2} w$. Mark the points $\frac{3}{4} v+\frac{1}{4} w$ and $\frac{1}{4} v+\frac{1}{4} w$ and $v+w$.
16 Mark the point $-\boldsymbol{v}+2 \boldsymbol{w}$ and any other combination $c \boldsymbol{v}+d \boldsymbol{w}$ with $c+d=1$. Draw the line of all combinations that have $c+d=1$.

17 Locate $\frac{1}{3} v+\frac{1}{3} w$ and $\frac{2}{3} v+\frac{2}{3} w$. The combinations $c v+c w$ fill out what line?
18 Restricted by $0 \leq c \leq 1$ and $0 \leq d \leq 1$, shade in all combinations $c \boldsymbol{v}+d \boldsymbol{w}$.
19 Restricted only by $c \geq 0$ and $d \geq 0$ draw the "cone" of all combinations $c \boldsymbol{v}+d \boldsymbol{w}$.

(a)

Problems 20-25 in 3-dimensional space

Problem Set 1.2

$1 \quad$ Calculate the dot products $u \cdot v$ and $u \cdot w$ and $u \cdot(v+w)$ and $w \cdot v$:

$$
u=\left[\begin{array}{r}
-6 \\
.8
\end{array}\right] \quad v=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \quad w=\left[\begin{array}{l}
8 \\
6
\end{array}\right]
$$

2 Compute the lengths $\|\boldsymbol{u}\|$ and $\|v\|$ and $\|w\|$ of those vectors. Check the Schwarz inequalities $|\boldsymbol{u} \cdot \boldsymbol{v}| \leq\|u\|\|v\|$ and $|v \cdot w| \leq\|v\|\|w\|$.

3 Find unit vectors in the directions of v and w in Problem 1, and the cosine of the angle θ. Choose vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ that make $0^{\circ}, 90^{\circ}$, and 180° angles with \boldsymbol{w}.

4 For any unit vectors \boldsymbol{v} and \boldsymbol{w}, find the dot products (actual numbers) of
(a) v and $-v$
(b) $\quad v+w$ and $v-w$
(c) $v-2 w$ and $v+2 w$

5 Find unit vectors \boldsymbol{u}_{1} and \boldsymbol{u}_{2} in the directions of $\boldsymbol{v}=(3,1)$ and $\boldsymbol{w}=(2,1,2)$. Find unit vectors \boldsymbol{U}_{1} and \boldsymbol{U}_{2} that are perpendicular to \boldsymbol{u}_{1} and \boldsymbol{u}_{2}.

6 (a) Describe every vector $w=\left(w_{1}, w_{2}\right)$ that is perpendicular to $\boldsymbol{v}=(2,-1)$.
(b) The vectors that are perpendicular to $V=(1,1,1)$ lie on a \qquad .
(c) The vectors that are perpendicular to $(1,1,1)$ and $(1,2,3)$ lie on a \qquad .

7 Find the angle θ (from its cosine) between these pairs of vectors:
(a) $v=\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right]$ and $\quad w=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(b) $\quad v=\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right] \quad$ and $\quad w=\left[\begin{array}{r}2 \\ -1 \\ 2\end{array}\right]$
(c) $\boldsymbol{v}=\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right] \quad$ and $\quad w=\left[\begin{array}{c}-1 \\ \sqrt{3}\end{array}\right]$
(d) $\quad v=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\quad w=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$.

8 True or false (give a reason if true or a counterexample if false):
(a) If \boldsymbol{u} is perpendicular (in three dimensions) to v and w, those vectors \boldsymbol{v} and \boldsymbol{w} are parallel.
(b) If u is perpendicular to v and w, then \boldsymbol{u} is perpendicular to $\boldsymbol{v}+2 \boldsymbol{w}$.
(c) If \boldsymbol{u} and \boldsymbol{v} are perpendicular unit vectors then $\|\boldsymbol{u}-\boldsymbol{v}\|=\sqrt{2}$.

9 The slopes of the arrows from $(0,0)$ to $\left(v_{1}, v_{2}\right)$ and $\left(w_{1}, w_{2}\right)$ are v_{2} / v_{1} and w_{2} / w_{1}. Suppose the product $v_{2} w_{2} / v_{1} w_{1}$ of those slopes is -1 . Show that $\boldsymbol{v} \cdot \boldsymbol{w}=0$ and the vectors are perpendicular.

10 Draw arrows from $(0,0)$ to the points $v=(1,2)$ and $w=(-2,1)$. Multiply their slopes. That answer is a signal that $v \cdot w=0$ and the arrows are \qquad _.

11 If $v \cdot w$ is negative, what does this say about the angle between v and w ? Draw a 3 -dimensional vector \boldsymbol{v} (an arrow), and show where to find all \boldsymbol{w} 's with $\boldsymbol{v} \cdot \boldsymbol{w}<0$.

12 With $v=(1,1)$ and $w=(1,5)$ choose a number c so that $w-c v$ is perpendicular to v. Then find the formula that gives this number c for any nonzero v and w. (Note: $c \boldsymbol{v}$ is the "projection" of \boldsymbol{w} onto \boldsymbol{v}.)
13 Find two vectors v and w that are perpendicular to $(1,0,1)$ and to each other.
14 Find nonzero vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ that are perpendicular to $(1,1,1,1)$ and to each other.
15 The geometric mean of $x=2$ and $y=8$ is $\sqrt{x y}=4$. The arithmetic mean is larger: $\frac{1}{2}(x+y)=$ \qquad . This would come in Example 6 from the Schwarz inequality for $v=(\sqrt{2}, \sqrt{8})$ and $w=(\sqrt{8}, \sqrt{2})$. Find $\cos \theta$ for this v and w.
16 How long is the vector $v=(1,1, \ldots, 1)$ in 9 dimensions? Find a unit vector \boldsymbol{u} in the same direction as v and a unit vector w that is perpendicular to v.
17 What are the cosines of the angles α, β, θ between the vector $(1,0,-1)$ and the unit vectors $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ along the axes? Check the formula $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \theta=1$.
Problems 18-31 lead to the main facts about lengths and angles in triangles.
18 The parallelogram with sides $v=(4,2)$ and $w=(-1,2)$ is a rectangle. Check the Pythagoras formula $a^{2}+b^{2}=c^{2}$ which is for right triangles only:

$$
(\text { length of } v)^{2}+(\text { length of } w)^{2}=(\text { length of } v+w)^{2} .
$$

19 (Rules for dot products) These equations are simple but useful:
(1) $v \cdot w=w \cdot v$
(2) $u \cdot(v+w)=u \cdot v+u \cdot w$
(3) $(c v) \cdot w=c(v \cdot w)$

Use (2) with $\boldsymbol{u}=\boldsymbol{v}+\boldsymbol{w}$ to prove $\|\boldsymbol{v}+w\|^{2}=v \cdot v+2 v \cdot w+w \cdot w$.
20 The "Law of Cosines" comes from $(v-w) \cdot(v-w)=v \cdot v-2 v \cdot w+w \cdot w$:

$$
\text { Cosine Law } \quad\|v-w\|^{2}=\|v\|^{2}-2\|v\|\|w\| \cos \theta+\|w\|^{2}
$$

If $\theta<90^{\circ}$ show that $\|v\|^{2}+\|w\|^{2}$ is larger than $\|v-w\|^{2}$ (the third side).
21 The triangle inequality says: (length of $v+w) \leq$ (length of v) + (length of w).
Problem 19 found $\|v+w\|^{2}=\|v\|^{2}+2 v \cdot w+\|w\|^{2}$. Use the Schwarz inequality $v \cdot w \leq\|v\|\|w\|$ to show that $\|$ side $3 \|$ can not exceed $\|$ side $1\|+\|$ side $2 \|$:

Triangle inequality

$$
\|v+w\|^{2} \leq(\|v\|+\|w\|)^{2} \quad \text { or } \quad\|v+w\| \leq\|v\|+\|w\| .
$$

22 The Schwarz inequality $|v \cdot w| \leq\|v\|\|w\|$ by algebra instead of trigonometry:
(a) Multiply out both sides of $\left(v_{1} w_{1}+v_{2} w_{2}\right)^{2} \leq\left(v_{1}^{2}+v_{2}^{2}\right)\left(w_{1}^{2}+w_{2}^{2}\right)$.
(b) Show that the difference between those two sides equals $\left(v_{1} w_{2}-v_{2} w_{1}\right)^{2}$. This cannot be negative since it is a square--so the inequality is true.

23 The figure shows that $\cos \alpha=v_{1} /\|v\|$ and $\sin \alpha=v_{2} /\|v\|$. Similarly $\cos \beta$ is
\qquad and $\sin \beta$ is \qquad . The angle θ is $\beta-\alpha$. Substitute into the trigonometry formula $\cos \beta \cos \alpha+\sin \beta \sin \alpha$ for $\cos (\beta-\alpha)$ to find $\cos \theta=v \cdot w /\|v\|\|w\|$.

24 One-line proof of the Schwarz inequality $|\boldsymbol{u} \cdot \boldsymbol{U}| \leq 1$ for unit vectors:

$$
|u \cdot U| \leq\left|u_{1}\right|\left|U_{1}\right|+\left|u_{2}\right|\left|U_{2}\right| \leq \frac{u_{1}^{2}+U_{1}^{2}}{2}+\frac{u_{2}^{2}+U_{2}^{2}}{2}=\frac{1+1}{2}=1 .
$$

Put $\left(u_{1}, u_{2}\right)=(.6,8)$ and $\left(U_{1}, U_{2}\right)=(.8, .6)$ in that whole line and find $\cos \theta$.
25 Why is $|\cos \theta|$ never greater than 1 in the first place?
26 If $\boldsymbol{v}=(1,2)$ draw all vectors $w=(x, y)$ in the $x y$ plane with $v \cdot w=x+2 y=5$. Which is the shortest w ?

27 (Recommended) If $\|v\|=5$ and $\|w\|=3$, what are the smallest and largest values of $\|v-w\|$? What are the smallest and largest values of $v \cdot w$?

Challenge Problems

28 Can three vectors in the $x y$ plane have $u \cdot v<0$ and $v \cdot w<0$ and $u \cdot w<0$? I don't know how many vectors in $x y z$ space can have all negative dot products. (Four of those vectors in the plane would certainly be impossible ...).

29 Pick any numbers that add to $x+y+z=0$. Find the angle between your vector $\boldsymbol{v}=(x, y, z)$ and the vector $w=(z, x, y)$. Challenge question: Explain why $v \cdot w /\|v\|\|w\|$ is always $-\frac{1}{2}$.
30 How could you prove $\sqrt[3]{x y z} \leq \frac{1}{3}(x+y+z)$ (geometric mean \leq arithmetic mean)?
31 Find four perpendicular unit vectors with all components equal to $\frac{1}{2}$ or $-\frac{1}{2}$.
32 Using $\boldsymbol{v}=\operatorname{randn}(3,1)$ in MATLAB, create a random unit vector $\boldsymbol{u}=\boldsymbol{v} /\|\boldsymbol{v}\|$. Using $V=\operatorname{randn}(3,30)$ create 30 more random unit vectors U_{j}. What is the average size of the dot products $\left|\boldsymbol{u} \cdot \boldsymbol{U}_{j}\right|$? In calculus, the average $\int_{0}^{\pi}|\cos \theta| d \theta / \pi=2 / \pi$.

