Show all appropriate work.

- 1. Solve the following differential equations. Explicitly solve for y(x) or x(t) when possible.
 - (a) $x \frac{dy}{dx} = (1+y)^2$.
 - (b) $\tan x \, dy + 2y \, dx = 0$.
 - (c) $(x^2 1)y' + 2xy^2 = 0$, $y(\sqrt{2}) = 1$.
 - (d) $x\frac{dx}{dt} + t = 1$.
- 2. Find the solution of $3y^2y' + 16x = 2xy^3$ such that y(x) is bounded as $x \to \infty$.
- 3. Suppose the population, N(t), of a given species is not always zero and varies at a rate proportional to its current value. If we call the constant of proportionality λ and assume the initial population is $N(0) = N_0 > 0$, then find N(t). Discuss the behavior of the solution as $t \to \infty$ for different values of λ .