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To	the	Student

I have	written	these	lecture	notes	because	I have	not	found	any	existing	text	for	Math	107	that
was	adequate	in	terms	of	the	choice	of	material, level	of	difficulty, organization	and	exposition.
Much	of	the	approach	in	Part	II of	these	notes	is	inspired	by	the	text	I previously	used	for	Math
107	(Farmer, David, “Groups	and	Symmetry,” AMS,	1996). I hope	that	these	notes	will	fit	the
needs	of	this	course, and	will	help	you	learn	this	material.
If	there	are	any	errors	in	the	text, or	anything	that	is	not	clearly	written, please	accept	my	apolo-

gies. I would	very	much	appreciate	your	feedback	on	this	text, both	in	terms	of	errors	that	you
find	and	suggestions	for	changes	or	additions	that	you	might	have. Comments	can	be	forwarded
to	me	in	person	(after	class, or	in	my	office, Albee	317), or	by	email	at bloch@bard.edu.

Prerequisites

It	is	assumed	that	anyone	using	this	text	has	passed	Part	I of	the	Mathematics	Diagnostic	Exam.
No	particular	background	in	mathematics	beyond	that	is	required. On	some	occasions	we	will
make	use	of	high	school	algebra	(for	example, the	quadratic	formula)	and	high	school	geometry
(for	example, the	Pythagorean	Theorem). For	the	most	part, however, we	will	treat	material	that,
while	touching	upon	some	very	substantial	ideas, does	not	require	much	in	the	way	of	algebra
or	geometry	background. Precalculus	(including	trigonometry, logarithms, and	the	like)	is	not
required. On	a	few	occasions	we	will	mention	trigonometry, but	those	brief	references	can	easily
be	skipped.
What	is	needed	to	read	this	text	is	a	willingness	to	learn	new	ideas, to	think	through	subtleties,

to	work	hard, and	to	use	your	imagination. Much	of	the	material	in	the	text	is	very	visual, and
making	drawings, and	mentally	imagining	geometric	objects, is	crucial. Some	of	the	arguments
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in	the	text, though	not	requiring	much	in	the	way	of	technical	background, are	nonetheless	quite
tricky, and	require	careful	attention	to	the	details.

Exercises

Like	music	and	art, mathematics	is	learned	by	doing, not	just	by	reading	texts	and	listening	to
lectures. In	mathematics	courses	we	assign	exercises	not	because	we	want	to	put	the	students
through	some	sort	of	mathematical	boot	camp, but	because	doing	exercises	is	the	best	way	to
work	with	the	material, and	to	see	what	is	understood	and	what	needs	further	study. Doing	the
exercises	is	therefore	a	crucial	part	of	learning	the	material	in	this	text. Exercises	range	from	the
routine	to	the	difficult. When	answering	an	exercise, you	may	use	any	facts	in	the	text	up	till
then	(including	previous	exercises).
One	feature	of	the	exercises	in	this	text	is	worth	mentioning. In	many	high	school	mathematics

courses, the	text	has	a	variety	of	worked-out	examples, and	then	the	homework	exercises	are
often	virtually	identical	to	the	worked-out	examples, but	with	different	numbers. The	students
then	do	the	exercises	by	simply	mimicking	the	examples	in	the	text. Students	are	often	satisfied
with	these	types	of	exercises, but	from	the	point	of	view	of	intellectual	growth, such	exercises
are	sorely	lacking. The	point	of	learning	mathematics	is	not	to	learn	to	imitate	what	the	teacher
or	the	book	does, but	rather	to	understand	new	concepts	and	be	able	to	apply	them. Hence, in
this	text, many	of	the	exercises	do	not	ask	the	students	to	mimic	what	is	done	in	the	text, but
rather	to	think	for	themselves. Many	(though	not	all)	of	the	exercises	in	this	text	are, purposely,
not	identical	to	worked	out	examples	in	the	text, but	rather	are	to	be	solved	by	thinking	about
the	material. Some	of	the	exercises	in	this	text	require	creativity	and	imagination, and	others	are
open	ended.
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1
Geometry	Basics

1.1 Euclid	and	Non-Euclid

Ancient	 Greek	mathematics	 was	 put	 into	 its	 ultimate	 deductive	 form	 by	 Euclid, who	 lived
roughly	around	300	BCE.	In	his	work	“The	Elements,” Euclid	took	an	already	developed	large
body	of	geometry, and	gave	it	logical	order	by	isolating	a	few	basic	definitions	and	axioms, and
then	deducing	everything	else	from	these	definitions	and	axioms. The	statements	 that	Euclid
deduces	from	his	axioms	and	definitions	are	called	propositions	(in	modern	textbooks	they	are
often	referred	to	as	theorems, which	means	the	same	thing). We	will	look	very	briefly	at	some
aspects	of	Euclid’s	Elements. This	massive	work	is	divided	up	into	13	“Books;” our	concern	is
primarily	with	Book	I.
Following	[Har00]	(though	others	emphasize	this	point	as	well), we	stress	that	Euclid, and	the

ancient	Greeks	generally, viewed	geometry	rather	differently	than	we	currently	do. The	only
quantities	 that	were	of	 interest	were	geometric	ones, and	of	 those, geometric	quantities	 that
could	be	constructed	with	straightedge	and	compass	were	of	particular	interest. Numbers	for
their	own	sake	seemed	less	of	interest	(perhaps	because	they	did	not	have	a	developed	under-
standing	of	numbers, or	perhaps	that	is	why	they	did	not	develop	such	an	understanding); a	solid
understanding	of	numbers	came	later	in	history. For	example, consider	the	famous	Pythagorean
Theorem, which	is	demonstrated	in	Section 2.2. In	contemporary	language, this	theorem	states
that	if	a	right	triangle	has	sides	of	length a and b, and	hypotenuse	of	length c, then a2+b2 = c2.
So	stated, this	theorem	tells	us	something	about	three	numbers a, b and c: if	these	three	num-
bers	satisfy	a	certain	condition	(namely	being	the	lengths	of	the	sides	and	hypotenuse	of	a	right
triangle), then	 they	must	also	satisfy	 the	algebraic	equation a2 + b2 = c2. To	Euclid, such
a	statement	about	numbers	would	not	have	made	sense. His	version	of	the	Pythagorean	The-
orem	is: “In	right-angled	triangles	 the	square	on	the	side	subtending	the	right	angle	is	equal
to	the	squares	on	the	sides	containing	the	right	angle.” (All	quotes	from	Euclid	are	taken	from
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[Euc56], which	is	the	standard	English	translation.) Euclid’s	version	of	the	theorem	is	a	statement
about	three	squares, namely	that	one	square	(the	one	on	the	hypotenuse)	“is	equal”	to	two	other
squares	(those	on	the	sides)	put	together. Euclid	is	interested	in	the	relation	between	these	three
squares, which	are	geometric	objects, and	not	numbers.
It	might	seem	from	a	modern	perspective	that	Euclid’s	version	of	the	Pythagorean	is	about	area,

and	thus	really	does	involve	numbers, because	the	area	of	a	planar	figure	(that	is, a	figure	in	the
plane)	is	a	number. In	fact, Euclid	does	not	mention	the	concept	of	area	at	all	in	his	version	of
the	Pythagorean	Theorem. When	Euclid	says	that	two	planar	figures	(such	as	squares)	are	equal,
he	is	not	making	a	statement	about	the	numerical	values	of	their	areas	(for	example	in	square
inches), but	rather	is	saying	that	one	figure	can	be	cut	up	into	triangles, and	reassembled	into
the	other	figure. Thus, Euclid’s	version	of	the	Pythagorean	Theorem	is	strictly	about	geometric
objects. Today, we	have	the	concept	of	assigning	to	each	planar	figure	its	area	(which	is	a	num-
ber), and	we	restate	various	geometric	properties	in	terms	of	numerical	properties, but	that	is
not	the	way	Euclid	(and	the	other	ancient	Greeks)	viewed	things. See	[Har00]	for	a	thorough
discussion	of	this	issue, and	more	generally	on	what	Euclid	said, and	how	he	understood	ge-
ometry. (We	highly	recommend	[Har00]	as	a	companion	to	reading	Euclid; though	much	of	the
book	is	aimed	at	a	mathematically	sophisticated	audience, some	parts	are	very	accessible, and
extremely	insightful.)
Without	 question, “The	 Elements”	 is	 one	of	 the	most	 important, and	 influential, works	 of

mathematics	ever	written—it	is	arguably	one	of	the	most	influential	intellectual	achievements
of	human	civilization	as	a	whole, not	just	of	mathematics. Euclid’s	treatment	of	geometry	be-
came	the	universally	accepted	method	of	doing	geometry	for	almost	two	millenia, up	till	the
19th	century. Moreover, not	only	was	Euclidean	geometry	accepted	as	unquestionably	true, but
Euclid’s	method	of	deductive	reasoning	was	considered	a	model	of	logical	argumentation, and
an	example	of	reasoning	that	produced	theorems	that	were	unquestionably	true. It	turns	out,
however, that	neither	of	these	attributes	of	“The	Elements”	is	true. Without	discounting	from	the
enormous	intellectual	and	historical	importance	of	Euclid’s	work, from	a	modern	vantage	point
we	can	identify	three	fundamental	flaws	in	Euclid, the	resolutions	of	which	did	not	take	place
until	roughly	two	millenia	after	Euclid’s	time.
Euclid	tried	to	give	precise	definitions	for	geometric	concepts; he	tried	to	give	a	set	of	axioms

that	describe	planar	(and	spatial)	geometry; and	he	tried	to	prove	all	other	results	in	geometry
in	a	rigorous	fashion	based	only	on	his	definitions	and	axioms. It	is	now	understood	that	there
are	flaws	in	Euclid’s	definitions; his	axioms	are	neither	complete	nor	necessarily	true; and	some
of	his	proofs	have	gaps. From	a	modern	point	of	view, Euclid	did	not	really	achieve	the	level
of	 rigor	 that	has	 traditionally	been	ascribed	 to	him. None	of	 this	 is	 to	deny	 the	greatness	of
Euclid’s	achievement—it	is	indeed	magnificent—but	understanding	the	problems	in	“The	Ele-
ments”	helps	give	an	accurate	assessment	of	Euclid, and	it	points	the	way	to	later	developments
in	geometry.
Let	us	turn	to	the	first	four	of	the	definitions	from	Book	I of	“The	Elements.” Euclid	has	more

definitions	than	the	four	we	quote, but	they	are	sufficient	to	illustrate	what	Euclid	was	attempting
to	accomplish.
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Definitions

1. A point	is	that	which	has	no	part.

2. A line	is	breadthless	length.

3. The	extremities	of	a	line	are	points.

4. A straight	line	is	a	line	that	lies	evenly	with	the	points	on	itself.

Euclid	wants	to	do	something	very	nice	with	his	definitions, namely	define	all	the	mathemati-
cal	terms	that	he	uses, such	as	point	and	line. Unfortunately, he	does	not	adequately	accomplish
his	task. When	he	says	that	“a	point	is	that	which	has	no	part,” he	never	actually	says	what	a
point	 is, only	what	 it	does	not	have, and	even	 that	 is	unclear. When	he	 says	 that	 “a	 line	 is
breadthless	length,” where	he	uses	the	word	“line”	to	mean	what	we	would	call	a	curve, he
does	not	tell	us	what	“breadth”	is, and	so	we	do	not	really	know	what	a	line	is. Similarly, he
say	“a	straight	line	is	a	line	that	lies	evenly	with	the	points	on	itself,” but	what	does	it	mean	for
something	to	“lie	evenly”	with	the	points	on	itself—other	than	to	be	straight, but	now	we	are
going	in	circles.
The	bottom	line	 is	 that, by	modern	standards, Euclid’s	definitions	are	meaningless. In	 fact,

we	now	understand	that	just	as	it	is	necessary	to	start	with	some	unproved	axioms	as	a	basis
for	all	the	other	theorems	to	be	proved, so	too	do	we	need	to	start	with	some	undefined	terms
as	a	basis	for	all	other	definitions. Euclid’s	definitions	are	doomed	to	fail, because	he	tries	to
define	everything. In	the	modern	axiomatic	approach	to	geometry, we	start	with	some	undefined
terms	(for	example, “point”	and	“line”), though	we	hypothesize	various	axiomatic	properties	for
these	undefined	terms	(for	example, we	assume	that	every	two	distinct	points	are	contained	in	a
unique	line). What	counts	is	not	what	points	and	lines	are, but	how	they	behave. If	they	behave
as	points	and	lines	ought	to, then	we	are	satisfied. Although	Euclid’s	definitions	do	not	work
as	stated, there	are	modern	axiom	schemes	(such	as	the	ones	by	Hilbert in	1899	and	Birkhoff
in	1932)	in	which	the	definitions	are	worked	out	properly—and	they	do	just	what	Euclid	was
attempting	to	do. In	other	words, it	is	possible	patch	up	Euclid’s	definitions, with	the	caveat	that
some	terms	are	left	undefined.
We	now	turn	to	Euclid’s	axioms. The	axioms	are	broken	up	into	“common	notions”	and	“pos-

tulates.” The	complete	list	of	common	notions	and	postulates	is	as	follows.

The	Common	Notions

1. Things	that	are	equal	to	the	same	things	are	equal	to	one	another.

2. If	equals	be	added	to	equals, the	wholes	are	equal.

3. If	equals	be	subtracted	from	equals, the	remainders	are	equal.

4. Things	that	coincide	with	one	another	are	equal	to	one	another.

5. The	whole	is	greater	than	the	part.
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The	Postulates

1. To	draw	a	straight	line	from	any	point	to	any	point.

2. To	produce	a	finite	straight	line	continuously	in	a	straight	line.

3. To	describe	a	circle	with	any	center	and	radius.

4. That	all	right	angles	are	equal	to	one	another.

5. That, if	a	straight	line	falling	on	two	straight	lines	makes	the	interior	angles	on	the
same	side	 less	 than	 two	right	angles, the	straight	 lines, if	produced	 indefinitely,
meet	on	that	side	on	which	are	the	angles	less	than	the	two	right	angles.

The	common	notions, which	are	not	about	geometry	per	se	(though	Euclid	might	have	thought
of	them	geometrically), seem	reasonable	enough	as	stated. The	postulates, by	contrast, need
some	explanation	in	modern	terminology; Euclid’s	wording	is	different	from	what	we	would	use
today. Euclid, and	in	general	the	ancient	Greeks, were	very	concerned	with	geometric	construc-
tions	using	straightedge	and	compass	(we	purposely	say	“straightedge”	and	not	“ruler,” because
they	did	not	allow	the	use	of	a	ruler	to	measure	things, only	a	straightedge	to	draw	straight	lines
between	given	points).
The	first	three	postulates	involve	straightedge	and	compass	constructions. The	First	Postulate

states	that, given	two	different	points, we	can	construct	(using	a	straightedge)	a	line	segment
from	one	point	to	the	other. In	modern	terminology, where	we	focus	on	properties	of	lines	and
points	and	not	on	constructions, the	First	Postulate	is	often	rephrased	as	“any	two	distinct	points
are	contained	in	one, and	only	one, line.” The	Second	Postulate	states	that	if	we	are	given	a	line
segment	(which	is	finite	in	length), we	can	extend	the	line	segment. The	Third	Postulate	states
that	given	a	point, and	given	a	radius, we	can	draw	the	circle	that	has	the	given	point	as	its
center, and	has	the	given	radius.
The	Fourth	and	Fifth	Postulates	are	not	concerned	with	straightedge	and	compass	construc-

tions. The	Fourth	Postulate	says	that	any	two	right	angles, no	matter	where	they	are	located	in
the	plane, are	equal	to	one	another. This	statement	may	seem	rather	obvious, but	there	is	in	fact
something	to	be	hypothesized	here; we	will	discuss	this	postulate	in	more	detail	in	Section 1.2,
where	we	discuss	angles.
The	Fifth	Postulate, by	contrast, requires	some	explanation. To	understand	what	the	postulate

says, suppose	we	are	given	a	 line, say k, and	 two	 lines	 that	 intersect k, say m and n. See
Figure 1.1.1. Let α and β be	the	angles	shown	in	the	figure. The	Fifth	Postulate	states	that	if
α + β < 180◦, then	the	lines m and n will	eventually	intersect	on	the	same	side	of k as α
and β. (Note	that 180◦ equals	“two	right	angles.”) Stated	this	way, Euclid’s	Fifth	Postulate	does
make	sense	intuitively. It	will	turn	out, as	discussed	later	in	this	section, that	the	Fifth	Postulate
has	great	historical	significance, much	more	than	the	other	four	postulates.

Having	stated	his	definitions, common	notions	and	postulates, Euclid	goes	on	to	prove	many
propositions. To	make	everything	completely	rigorous, Euclid	proves	Proposition 1	using	only
his	definitions, common	notions	and	postulates. Proposition 2	is	proved	using	Proposition 1,
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Figure	1.1.1

together	with	the	definitions, common	notions	and	postulates. And	so	on. Some	of	the	propo-
sitions	in	“The	Elements”	are	very	familiar	to	us	today, for	example	the	Pythagorean	Theorem,
which	is	Proposition 47	in	Book	I of	“the	Elements,” being	the	penultimate	theorem	in	that	book;
the	last	proposition	is	a	converse	to	the	Pythagorean	Theorem	(which	we	state	and	demonstrate
in	our	Proposition 2.5.2). The	first	two	propositions	in	Book	I are	as	follows.

Propositions

1. On	a	given	finite	straight	line, to	construct	an	equilateral	triangle.

2. To	place	at	a	given	point	(as	an	extremity)	a	straight	line	equal	to	a	given	straight
line.

As	with	some	of	the	postulates, these	first	two	propositions	involve	constructions	with	straight-
edge	and	compass	(though	not	all	the	propositions	involve	constructions). Proposition 1	of	Eu-
clid	says	that, given	a	line	segment, we	can	construct	an	equilateral	triangle	that	has	the	line
segment	as	one	of	its	edges. Proposition 2	says	that, given	a	line	segment, and	a	point	some-
where	in	the	plane, we	can	construct	a	new	line	segment	that	is	equal	in	length	to	the	given
one, and	has	the	given	point	as	one	of	its	endpoints.
In	modern	terminology, the	proof	of	Euclid’s	Proposition 1	has	two	stages. We	are	given	a

line	segment	in	the	plane. First, Euclid	tells	us	how	to	construct	a	certain	triangle	that	has	the
line	segment	as	one	of	its	edges; second, he	proves	that	the	triangle	so	constructed	is	indeed
equilateral. What	concerns	us	is	the	first	stage	of	this	proof. The	idea	is	simple. Suppose	we	have
a	line	segment	with	endpoints A and B, as	shown	in	Figure 1.1.2 (i). First, draw	an	arc	(which
is	simply	part	of	a	circle)	using	a	compass	with	center	at A, and	with	radius	the	length	from A

to B; then	draw	an	arc	with	center B, and	the	same	radius. See	Figure 1.1.2 (ii). Let C denote
the	point	where	the	two	arcs	intersect. Using	a	straightedge, draw	the	line	segments	from A to
C, and	from B to C. See	Figure 1.1.2 (iii). We	now	have	a	triangle	with	vertices A, B and C. In
the	second	stage	of	his	proof, Euclid	shows	that	this	triangle	is	indeed	equilateral.
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(i)                                                                          (ii)  

(iii) 

A B A B

C

A B

Figure	1.1.2

BEFORE YOU READ FURTHER:

Euclid’s	proof	of	Proposition 1	is	intuitively	completely	correct, but	from	a	rigorous	point
of	view, there	is	a	flaw. Try	to	see	if	you	can	figure	out	what	the	problem	with	this	proof
is.

The	problem	with	Euclid’s	proof	of	Proposition 1	ultimately	goes	back	to	the	fact	that	he	wants
his	proof	to	rely	only	on	his	definitions, postulates	and	common	notions. That	we	can	draw	the
two	arcs	shown	in	Figure 1.1.2 (ii)	 indeed	follows	from	the	Third	Postulate, and	that	we	can
draw	the	line	segments	from A to C and	from B to C follows	from	the	First	Postulate. What	is
not	explicitly	guaranteed	by	any	of	Euclid’s	postulates	or	common	notions	is	that	the	two	arcs
we	constructed	actually	intersect. We	simply	assumed	that	the	two	arc	intersect, and	labeled
the	point	of	intersection C. How	do	we	know	that	the	two	arcs	really	do	intersect? It	certainly
looks	as	if	they	do	in	Figure 1.1.2 (ii), but	that	is	not	a	convincing	argument, because	we	might
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have	drawn	the	figure	incorrectly. Moreover, if	a	proof	is	genuinely	rigorous, it	ought	not	to	rely
on	a	picture—the	picture	is	simply	meant	to	help	our	intuition.
It	is	certainly	not	true	that	any	two	circles	in	the	plane	intersect, for	example	two	circles	with

radius 1 inch	each, and	with	centers 10 inches	apart. Hence, to	guarantee	that	two	arcs	(which
are	parts	of	circles)	intersect, we	would	need	to	know	something	specific	about	them	that	insures
intersection. For	example, if	we	knew	something	about	the	relation	between	the	centers	of	the
circles	containing	the	arcs	and	the	radii	of	the	circles, then	we	might	be	able	to	demonstrate
that	the	arcs	intersect; if	the	distance	between	the	centers	of	the	circles	is	too	large	in	relation
to	the	radii, then	the	arcs	might	not	intersect. It	is, in	fact, possible	to	give	criteria	on	the	radii
and	centers	of	two	circles	that	insure	that	two	circles	intersect. There	is, however, a	more	subtle
problem	with	this	aspect	of	Euclid’s	proof. Not	only	do	we	need	to	insure	that	the	radii	and
distance	between	the	centers	of	two	circles	are	appropriate	in	order	to	insure	that	the	circles
intersect, but	we	also	need	 to	know	that	circles	are	“continuous,” that	 is, that	 they	have	no
“gaps”	in	them	right	where	the	intersection	is	supposed	to	take	place. This	issue	of	gaps	is	very
subtle, and	we	do	not	have	the	space	to	discuss	it	here. In	his	postulates	and	common	notions,
Euclid	addresses	neither	 the	issue	of	appropriate	radii	and	centers, nor	 the	issue	of	no	gaps,
and	therefore	he	has	not	rigorously	proved	his	Proposition 1. Modern	axiomatic	treatments	of
Euclidean	geometry	successfully	avoid	Euclid’s	insufficient	axioms	by	giving	more	axioms	than
Euclid	gave. It	is	not	that	what	Euclid	said	was	wrong; it	is	simply	insufficient.
The	 two	problems	with	Euclid	mentioned	so	 far, namely	 the	definitions	 that	do	not	define

anything, and	the	insufficient	axioms, can	both	be	remedied. Two	thousand	years	after	Euclid,
mathematicians	have	showed	that	with	regard	to	these	two	issues, Euclid	was	correct, just	miss-
ing	some	details. There	is, however, another, more	tricky, problem	with	Euclid. The	problem
concerns	Euclid’s	Fifth	Postulate. A look	at	the	five	postulates	quickly	reveals	that	the	fifth	is
somehow	different	from	the	first	four. The	first	four	are	simple	to	state, and	immediately	believ-
able. The	fifth, by	contrast, is	much	longer	to	state, and, while	certainly	believable, does	not
seem	as	immediately	obvious	as	the	first	four. Mathematicians	throughout	the	centuries	after
Euclid	noticed	this	problem. There	is	nothing	inherently	wrong	with	a	postulate	that	is	compli-
cated, as	is	Euclid’s	Fifth	Postulate, but	it	is	bothersome. One	of	the	reasons	people	liked	Euclid’s
geometry	is	that	(ignoring	the	flaws	mentioned	above, which	seem	to	have	been	noticed	only
later	on), it	seemed	to	be	a	model	for	proving	that	certain	facts	are	indisputably	true. Euclid	was
the	ultimate	example	of	how	human	beings	could	obtain	certain	knowledge. If	one	starts	with
indisputably	true	axioms, and	proceeds	in	an	airtight	logical	fashion	to	deduce	things	from	the
axioms, then	whatever	one	deduces	must	also	be	indisputably	true. However, if	Euclid	is	to	be
viewed	in	this	way, then	it	is	crucial	that	his	axioms	are	indisputably	true. The	common	notions
and	the	first	four	postulates	seem	quite	convincing. The	Fifth	Postulate, by	contrast, does	not
seem	quite	as	indisputable, given	its	more	complicated	nature.
What	can	be	done	about	the	Fifth	Postulate? It	cannot	simply	be	dropped—it	is	most	definitely

used	in	some	of	Euclid’s	proofs. What	a	number	of	people	after	Euclid	tried	to	do	was	to	deduce
the	Fifth	Postulate	from	the	other	four. If	the	Fifth	Postulate	could	be	deduced	from	the	other
four, then	anything	provable	using	all	five	postulates	could	be	proved	using	the	first	four, which
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would	add	to	the	indisputability	of	whatever	was	proved	by	Euclid. Over	the	years, a	number
of	people	claimed	to	have	deduced	Euclid’s	Fifth	Postulate	from	the	other	four. We	now	know,
however, that	 they	were	all	mistaken. As	discovered	 independently	by	Karl	 Friedrich	Gauss
(1777-1855), Janos	Bolyai (1802-1860)	and	Nikolai	 Ivanovitch	Lobatchevsky (1793-1856)	 in
the	early	19th	century, it	is	possible	to	conceive	of	perfectly	good	geometries	that	involve	the
first	 four	postulates, but	 something	other	 than	 the	Fifth	Postulate	 (we	will	mention	how	 this
could	happen	very	briefly	below). This	discovery	was	extremely	revolutionary. In	fact, Gauss,
arguably	the	greatest	mathematician	of	all	times, but	someone	who	seems	to	have	been	quite
concerned	about	his	reputation, did	not	initially	publish	his	discovery	of	what	is	now	called
non-Euclidean	geometry, for	 fear	of	 the	public	 reaction. For	 the	 two	thousand	years	prior	 to
Gauss, “The	Elements”	had	been	taken	as	something	approaching	a	sacred, non-challengeable,
text. To	challenge	Euclid, as	Gauss	did	privately, and	subsequently	Bolyai	and	Lobatchevsky	did
publicly	(and	independently)	in	1831	and	1829	respectively, was	seen	as	almost	as	heretical	as
Darwin	was	later	in	the	19th	century.
We	cannot	give	here	the	details	of	the	non-Euclidean	revolution, except	to	say	that	it	ushered	in

a	completely	new	era	of	geometry. New	approaches	to	geometry, such	as	the	use	of	isometries	(a
crucial	tool	in	our	in	our	treatment	of	symmetry	in	Chapters 4 and	5), and	Riemannian	geometry
(that	was	later	used	by	Einstein	in	his	general	theory	of	relativity)	flourished	in	the	19th	century,
once	the	strangle-hold	of	Euclid’s	approach	was	lifted. (Of	course, had	it	not	been	for	Euclid,
geometry	might	not	have	 reached	 the	19th	century	 in	as	developed	a	 form	as	 it	did, so	we
should	not	belittle	Euclid’s	fundamental	importance	to	geometry, and	all	of	mathematics; there
are	simply	other	approaches	to	geometry	as	well.) The	discovery	of	non-Euclidean	geometry
had	philosophical	importance	beyond	just	geometry, or	even	mathematics. If	Euclid	was	once
held	up	as	a	model	for	absolute	truth, and	if	we	now	know	that	other	types	of	geometry	are
possible, then	we	need	to	rethink	what, if	anything, we	can	know	with	absolute	certainty. See
[Tru87]	or	[Gre93]	for	more	details	about	the	non-Euclidean	revolution.
To	get	a	bit	more	of	a	feel	for	what	makes	Euclidean	geometry	distinct	from	non-Euclidean

geometry, we	mention	an	important	result	in	Euclidean	geometry	known	as	Playfair’s	Axiom. A
demonstration	of	Playfair’s	Axiom	will	be	given	in	Section 1.2.

Proposition 1.1.1 (Playfair’s	Axiom). Supposem is	a	line, andA is	a	point	not	onm. Then	there
is	one	and	only	one	line	through A that	is	parallel	to m.

From	our	point	of	view	“Playfair’s	Axiom”	in	not	an	axiom	at	all, but	a	theorem	in	Euclidean
geometry; however, the	name	is	traditional, and	we	use	it	whether	or	not	it	makes	literal	sense.
Actually, Playfair’s	Axiom	is	not	only	a	theorem	in	Euclidean	geometry, but, more	strongly, it	is
equivalent	to	Euclid’s	Fifth	Postulate. By	that	we	mean	that	Euclid’s	five	postulates	imply	Play-
fair’s	Axiom, and	Euclid’s	first	four	postulates	together	with	Playfair’s	Axiom	imply	Euclid’s	Fifth
Postulate. (In	fact, in	some	modern	geometry	texts, the	statement	of	Playfair’s	Axiom	is	incor-
rectly	referred	to	as	Euclid’s	Fifth	Postulate. Although	logically	it	is	correct	to	substitute	Playfair’s
Axiom	for	Euclid’s	Fifth	Postulate, because	the	two	statements	imply	each	other, historically	it
is	completely	inaccurate	to	replace	the	one	statement	with	the	other.)
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Non-Euclidean	geometry	results	 from	taking	Euclid’s	first	 four	postulates, but	replacing	the
Fifth	Postulate	by	 something	else. It	 is	 easier	 to	understand	what	happens	 in	non-Euclidean
geometry	 if	we	consider	alternatives	 to	Playfair’s	Axiom. Suppose	that m is	a	 line, and A is
a	point	not	on m. If	Playfair’s	Axiom	were	not	true, then	there	are	two	possible	cases: either
there	is	more	than	one	line	through A that	is	parallel	to m, or	there	is	no	line	through A that
is	parallel	to m. If	the	former	possibility	is	taken	as	an	axiom	instead	of	Playfair’s	Axiom, the
resulting	geometry	is	called	hyperbolic	geometry; if	the	latter	possibility	is	taken	as	an	axiom
instead	of	Playfair’s	Axiom, the	resulting	geometry	is	called	spherical	geometry. In	Section 2.2,
we	will	see	that	Playfair’s	Axiom	implies	that	the	sum	of	the	angles	in	a	triangle	is 180◦. Hence,
in	Euclidean	geometry	the	sum	of	the	angles	in	a	triangle	is 180◦. By	contrast, it	can	be	proved
that	in	hyperbolic	geometry, the	sum	of	the	angles	in	a	triangle	is	always	less	than 180◦ (the
precise	sum	can	vary	from	triangle	to	triangle); in	spherical	geometry, the	sum	of	the	angles	in
a	triangle	is	always	greater	than 180◦ (again, the	precise	sum	can	vary	from	triangle	to	triangle).
It	is	hard	to	imagine	how	hyperbolic	or	spherical	geometry	would	work	if	we	use	the	familiar

sort	of	straight	lines	found	in	the	plane, but	there	is	no	need	to	restrict	ourselves	only	to	the	most
familiar	situation. For	example, think	of	the	surface	of	a	sphere	as	a	universe, and	think	of	great
circles	as	“straight	lines”	in	this	universe	(great	circles	are	straight	from	the	point	of	view	of	a
bug	living	on	the	sphere). The	geometry	that	uses	great	circles	on	the	sphere	turns	out	to	be	what
we	now	call	spherical	geometry. Models	for	hyperbolic	geometry	can	also	be	found. A detailed
discussion	of	non-Euclidean	geometry	would	 take	us	 too	 far	 afield; see	 [Mar75]	or	 [Gre93]
for	further	details. One	point	worth	mentioning	is	that	it	can	be	proved, though	this	is	far	from
obvious, that	Euclidean	geometry	is	no	more	or	less	valid	than	hyperbolic	or	spherical	geometry.
That	is, if	we	accept	Euclidean	geometry, we	need	to	accept	non-Euclidean	geometry	as	well; if
we	do	not	accept	non-Euclidean	geometry, then	we	cannot	accept	Euclidean	geometry	either.
Mathematically	speaking, there	is	more	than	one	possible	valid	geometry. Which	geometry	our
physical	universe	satisfies	is	another	matter, one	which	physicists, not	mathematicians, need	to
decide	by	use	of	experiments. On	a	daily	basis, our	universe	is	either	Euclidean	or	close	enough
to	it	that	it	is	Euclidean	for	all	practical	purposes.
In	this	text	we	will	be	working	within	within	the	framework	of	Euclidean	geometry, though

we	will	not	be	approaching	things	axiomatically	(aka	synthetically). However, we	wanted	to
have	a	brief	overview	of	what	 the	axiomatic	properties	of	 Euclidean	geometry	are, because
these	features	ultimately	underlie	everything	that	we	do, even	when	they	are	not	mentioned
explicitly. For	example, we	will	see	where	Euclid’s	Fifth	Postulate	comes	into	play	in	the	study
of	parallel	lines	in	Section 1.2. Our	study	of	symmetry, in	Part	II of	this	book, uses	an	approach
to	geometry	that	only	came	into	being	after	the	discovery	of	non-Euclidean	geometry. However,
even	though	our	study	of	symmetry	may	seem	different	from	the	approach	found	in	Euclid, it
too	is	ultimately	Euclidean.
Finally, we	end	 this	 section	with	 the	hope	 that	our	 remarks	about	 the	flaws	 in	Euclid	will

not	discourage	the	reader	from	taking	an	interest	in	“The	Elements.” Euclid	contains	a	wealth
of	substantial	mathematical	ideas, though	the	dry	and	sometimes	tedious	style	do	not	always
make	these	ideas	apparent	upon	first	encounter. Anyone	wishing	to	read	“The	Elements”	would
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do	well	to	read	both	the	actual	text	found	in	[Euc56], together	with	a	companion	to	Euclid, such
as	the	excellent	[Har00].

1.2 Lines	and	Angles

The	 two	most	 fundamental	notions	 in	 the	geometry	of	 the	plane	are point and line. By	 the
word	“line”	we	always	mean	a	straight	line	(as	is	standard	usage	today, though	different	from
Euclid’s	usage). As	discussed	 in	Section 1.1, Euclid	attempted	 to	define	 these	concepts, but
did	not	succeed	in	doing	so	in	a	meaningful	way. We	take	the	modern	approach, and	simply
assume	that	there	are	such	things	as	lines	and	points	in	the	plane, and	that	there	is	a	relation
between	points	and	 lines, namely	 that	given	a	point	and	given	a	 line, either	 the	point	 is	on
the	line	or	it	is	not. Further, we	require	the	relation	between	points	and	lines	to	satisfy	certain
familiar	properties, such	as	the	fact	that	any	two	distinct	points	are	contained	in	one	and	only
one	line	(this	is	essentially	Euclid’s	First	Postulate). We	do	not	care	so	much	what	points	and
lines	are, but	how	they	behave. For	most	of	this	text	(except, for	example, in	Chapter 3), we	will
be	restricting	our	attention	to	points	and	lines	in	the	plane. It	is	also	possible	to	discuss	points
and	lines	(and	other	geometric	objects)	in	three	dimensional	space, and	higher	dimensions	too.
When	not	otherwise	noted, the	reader	should	assume	we	are	discussing	the	plane.
We	start	our	discussion	of	lines	with	some	notation. Given	two	distinct	points A and B in	the

plane, we	know	that	there	is	a	unique	line	containing A and B. We	denote	this	line	by
←→
AB.

When	it	is	not	necessary	to	specify	the	pointsA and B, we	will	also	use	single	letters	such	asm
to	denote	lines. Intuitively, a	line	“goes	on	forever”	in	two	directions. Given	two	distinct	points

A and B, we	can	also	have	that	part	of	the	line
←→
AB that	starts	at A, and	“goes	on	forever”	in

the	direction	of B. Such	an	object	is	called	the ray from A through B, and	is	denoted	by
−→
AB.

We	call A the starting	point of	the	ray
−→
AB. We	can	also	look	at	that	part	of	the	line

←→
AB that

starts	at A and	ends	at B (or	vice-versa). Such	an	object	is	called	the line	segment from A to B,
and	is	denoted	by AB. See	Figure 1.2.1 for	all	three	types	of	objects. We	call	the	points A and
B the endpoints of	the	line	segment AB.

One	of	the	most	basic	question	about	lines	in	the	plane	is	whether	or	not	two	lines	intersect,
which	means	that	the	two	lines	have	a	point	in	common. Our	first	result	is	the	following	rather
obvious	fact; even	obvious	results	need	to	be	proved, however, because	our	intuition	about	what
is	“obvious”	is	sometimes	wrong	(for	example, people	used	to	think	that	the	earth	was	flat).

Proposition 1.2.1. Two	distinct	lines	intersect	in	at	most	one	point.

Demonstration. Supposem and n are	distinct	lines. Suppose	further	that	they	intersect	in	more
than	one	point. Hence, there	are	at	least	two	different	points, sayA and B, that	are	contained	in
both m and n. It	follows	that	each	of m and n is	a	line	containing	the	points A and B, which
contradicts	the	fact	stated	above	that	any	two	distinct	points	are	contained	in	one	and	only	one
line. Hence	it	must	be	the	case	that m and n do	not	intersect	in	more	than	one	point.
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Figure	1.2.1

Because	of	the	above	proposition, if	we	are	given	two	distinct	lines, either	they	do	not	intersect,
or	they	intersect	in	precisely	one	point. We	say	that	two	lines	are parallel	lines if	they	do	not
intersect; if	two	lines	are	not	parallel, we	say	that	they	are intersecting	lines. See	Figure 1.2.2.
Notice	that	the	definition	of	parallel	lines	does	not	mention	anything	about	parallel	lines	“going
in	the	same	direction,” or	“keeping	constant	distance	from	each	other.” Both	of	these	ideas	are
true	about	parallel	lines	in	the	plane, but	they	are	not	part	of	the	definition, and	need	to	be
proved. We	will	essentially	prove	the	first	of	these	ideas	in	Proposition 1.2.3, and	the	second
in	Proposition 2.2.6. Notice	also	that	two	equal	lines	are	not	considered	parallel, because	they
certainly	do	intersect.

parallel lines intersecting lines

Figure	1.2.2

Strictly	speaking, the	term	“parallel”	applies	only	to	lines, and	not	to	line	segments. However,
it	makes	intuitive	sense	to	discuss	line	segments	being	parallel	or	not, and	we	will	say	that	two
line	segments	are parallel if	the	lines	containing	the	line	segments	are	parallel.
Having	briefly	discussed	lines, we	now	turn	to	another	type	of	fundamental	geometric	object,

namely	angles. An angle is	a	region	of	the	plane	that	is	between	two	rays	that	intersect	in	a
common	starting	point. For	example, the	shaded	region	in	Figure 1.2.3 is	an	angle. The	point
of	intersection	of	the	two	rays	is	called	the vertex of	the	angle. Given	two	rays	that	intersect
in	a	common	starting	point, there	are	actually	two	angles	that	the	rays	determine, for	example
the	shaded	region	in	Figure 1.2.3, and	the	unshaded	region. It	is	therefore	necessary	to	specify
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which	of	the	regions	is	being	referred	to. The	way	to	avoid	this	sort	of	ambiguity	is	to	specify
an	angle	not	only	by	two	rays	that	intersect	in	a	common	starting	point, but	also	to	specify	a
direction, either	clockwise	or	counterclockwise. In	Figure 1.2.4 (i)	we	see	an	angle	specified	by
two	rays	and	the	clockwise	direction	(indicated	by	the	curved	arrow); in	Figure 1.2.4 (ii)	we	see
a	different	angle	specified	by	the	same	two	rays	as	in	Part (i)	of	the	figure, but	with	the	opposite
direction.

Figure	1.2.3

(i)                                                                  (ii)

Figure	1.2.4

An	angle	is	a	geometric	object. Just	as	we	can	measure	the	lengths	of	line	segments, we	can
also	measure	angles, not	in	units	of	length	(for	example, feet	or	meters), but	in	units	of	angular
measure. Measuring	a	geometric	object	means	assigning	to	the	object	a	number, which	in	some
sense	tells	us	the	“size”	of	the	object. There	are	two	standard	units	of	angular	measure, degrees
and	 radians. Degrees	are	 simpler	 to	explain, and	are	 therefore	used	 regularly	 in	elementary
and	secondary	schools; radians	are	prefered	 in	advanced	mathematics, for	various	 technical
reasons	we	cannot	discuss	here. We	assume	that	the	reader	is	familiar	with	degree	measure	of
angles, and	we	will	use	degrees	in	this	text. (We	should	mention	that	the	number 360 used	in
the	context	of	degree	measure	is	completely	arbitrary, and	arises	historically, rather	than	out	of
any	real	reason. It	would	be	equally	valid	to	break	up	the	total	angle	going	around	a	point	into
any	other	number	of	“degrees,” but 360 is	familiar	to	everyone, and	we	will	stick	with	it.)
The	one	point	about	measuring	angles	(by	degrees	or	any	other	method)	that	we	need	to	stress

involves	our	previous	observation	 that	 there	are	 two	“directions”	 in	which	an	angle	can	be
specified, namely	clockwise	and	counterclockwise. Both	directions	are	equally	valid, but	it	is
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convenient	to	pick	one	direction	as	having	positive	measure, and	one	direction	having	negative
measure. We	will	 take	 the	clockwise	direction	as	positive, because	that	 is	 the	more	familiar
direction	in	daily	life. (It	 is	completely	arbitrary	which	direction	is	 taken	as	positive, as	long
as	we	all	agree	on	the	choice. In	more	advanced	mathematics	 texts, it	 is	customary	to	have
counterclockwise	be	the	positive	direction.) In	Figure 1.2.5 (i)	we	see	an	angle	that	has	measure
45◦, and	in	Figure 1.2.5 (ii)	we	see	an	angle	that	has	measure −45◦.

-45°45°

(i)                                                                             (ii)

Figure	1.2.5

Degrees	are	units	for	measuring	angles. It	is	important	to	distinguish	between	an	angle	and	its
measure. An	angle	is	a	geometric	object; its	measure	in	degrees	is	a	number	that	we	associate
with	 the	angle. Analogously, the	height	of	a	person	 is	a	number	 that	we	associate	with	 that
person. Just	as	two	people	can	have	the	same	height, but	still	be	different	people, similarly	two
angles	can	have	the	same	measure, but	still	be	different	angles. For	example, in	Figure 1.2.6 we
see	two	different	angles, each	of	which	has	measure 60◦. Of	course, if	two	angles	have	different
measure, they	must	be	different	angles. If	two	angles	have	the	same	measure, they	need	not	be
the	same	angle, but	it	is	always	the	case	that	they	are	congruent, which	means	intuitively	that
one	angle	could	be	“picked	up	and	placed	precisely	on	top	of	the	other.” We	will	not	need	a
more	formal	definition	of	congruence	here, and	will	stick	to	the	intuitive	notion. (The	concept	of
isometry, which	is	discussed	in	detail	in	Chapter 4, provides	one	way	of	defining	congruence.)
The	bottom	line	is	that	when	we	say	that	“two	angle	are	equal”	we	mean	that	they	are	congruent,
and	in	particular	that	they	have	the	same	measure	in	degrees. For	the	sake	of	brevity, we	will
sometimes	“abuse”	terminology	and	say, for	example, of	an	angle	that	“is” 90◦, when	we	should
more	properly	say	that	the	angle	“has	measure” 90◦. Such	abuse	of	terminology	is	very	common,
and	should	cause	no	confusion.

Let	us	now	return	to	Euclid’s	Fourth	Postulate, which	says	“That	all	right	angles	are	equal	to
one	another.” To	understand	this	postulate, we	need	to	know	what	a	right	angle	is. Today	we
tend	to	think	of	a	right	angle	as	being	defined	to	be	an	angle	of 90◦, but	that	is	not	the	proper
way	to	understand	right	angles, because	it	only	tells	us	the	measure	of	right	angles, not	what	they
are	geometrically. The	geometric	idea	of	a	right	angle	is	based	on	what	happens	when	two	lines
intersect	in	a	point. As	we	see	in	Figure 1.2.7 (i), two	lines	intersecting	divide	the	plane	into	four
angles. The	four	angles	are	not	necessarily	all	equal	to	each	other. However, if	it	does	happen
that	all	four	angles	are	equal	to	each	other, then	we	call	each	of	the	four	angles	a right	angle.
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Figure	1.2.6

See	Figure 1.2.7 (ii). What	Euclid’s	Fourth	Postulate	says	is	that	any	such	right	angle, formed	by
any	two	intersecting	lines, is	equal	to	any	other	right	angle	formed	by	two	other	intersecting
lines. As	for	the	degree	measure	of	a	right	angle, because	the	total	angle	going	around	a	point
is 360◦, and	because	there	are	four	right	angles	at	a	point, it	follows	that	the	measure	of	any
right	angle	is 360◦/4 = 90◦. Using	the	standard	abuse	of	terminology, we	will	follow	common
custom	and	simply	say	that	any	right	angle	“is” 90◦. Similarly, the	angle	along	any	straight	line
is 180◦.

(i)                                                                         (ii)

Figure	1.2.7

We	now	make	two	more	geometric	definitions	concerning	angles. First, suppose	we	have	two
angles	that	are	“along	a	line;” that	is, two	angles	that	are	formed	when	a	ray	starts	at	a	point	on	a
line. Two	such	angles	are	called supplementary	angles. The	anglesα andβ in	Figure 1.2.8 (i)	are
supplementary	angles. Next, suppose	we	have	two	intersecting	lines. Of	the	four	angles	formed,
there	are	two	pairs	of	“opposite	angles;” that	is, angles	that	intersect	only	in	a	common	point.
Such	angles	are	called vertical	angles. The	angles α and β in	Figure 1.2.8 (ii)	are	vertical	angles.

We	now	state	a	very	simple	result	about	angles, using	the	concepts	just	defined.

Proposition 1.2.2.

1. Supplementary	angles	add	up	to 180◦.

2. Vertical	angles	are	equal.
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(i)                                                                            (ii)

α
α β β

Figure	1.2.8

Demonstration.

(1). This	is	evident, because	the	angle	along	a	straight	line	is 180◦.

(2). In	Figure 1.2.9 we	see	angles α and β, which	are	vertical	angles. Notice	that	the	angle
γ is	a	supplementary	angle	to	each	of α and β. Hence, by	Part (1)	of	this	proposition, we	know
that α + γ = 180◦ and γ + β = 180◦. We	deduce	that α = 180◦ − γ and β = 180◦ − γ,
and	therefore α = β.

α β
γ

Figure	1.2.9

The	proof	of	Proposition 1.2.2 is	very	simple. Moreover, it	does	not	make	use	of	the	full	strength
of	Euclid’s	postulates, in	that	the	Fifth	Postulate	is	not	used. Our	next	result	about	angles	is	more
substantial, and	the	Fifth	Postulate	is	crucial	to	its	proof. We	are	interested	in	the	situation	where
two	lines, saym andn intersect	a	third	line, say k; see	Figure 1.2.10. The	linesm and k form	four
angles, and	the	lines n and k form	four	more	angles, all	of	which	are	labeled	in	Figure 1.2.10.
We	call	angles x and y interior	alternating	angles, and	we	also	call	angles z and w interior
alternating	angles. Similarly, we	call	angles α and β exterior	alternating	angles, and	we	also
call	angles δ and ϵ exterior	alternating	angles. Finally, we	call	angles x and β corresponding
angles, and	we	also	call	angles δ and w, angles z and ϵ, and	angles α and y, corresponding
angles. The	following	proposition	says	that	the	above	sorts	of	angles	are	particularly	nice	when
we	start	with	two	parallel	lines	that	intersect	a	third	line.

Proposition 1.2.3. Suppose	two	parallel	lines	intersect	a	third	line. Then	the	interior	alternating
angles	are	equal; the	exterior	alternating	angles	are	equal; the	corresponding	angles	are	equal.
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Figure	1.2.10

Demonstration. In	Figure 1.2.10 we	see	angles x and y, which	are	interior	alternating	angles,
angles α and β, which	are	exterior	alternating	angles, and	angles x and β, which	are	corre-
sponding	angles. We	will	demonstrate	the	proposition	with	regard	to	these	three	pairs	of	angles;
the	other	appropriate	pairs	of	angles	are	similar, and	we	will	skip	the	details	for	them.
We	start	with	the	observation	that	one	of	the	following	three	cases	must	certainly	hold: either

x+w < 180◦, or x+w = 180◦, or x+w > 180◦. Suppose	first	that x+w < 180◦. Recall
Euclid’s	Fifth	Postulate, which	says	“That, if	a	straight	line	failing	on	two	straight	lines	makes
the	interior	angles	on	the	same	side	less	than	two	right	angles, the	straight	lines, if	produced
indefinitely, meet	on	 that	 side	on	which	are	 the	angles	 less	 than	 the	 two	 right	angles.” This
postulate	is	precisely	suited	to	our	current	situation, and	it	implies	that m and n intersect	on
the	side	of x and w. We	have	therefore	reached	a	logical	impossibility, because m and n are
assumed	to	be	parallel, and	hence	cannot	intersect. We	conclude	that	it	cannot	be	the	case	that
x+w < 180◦.
Now	suppose	that x+w > 180◦. Clearly y = 180◦ −w and z = 180◦ − x. Therefore

y+ z = (180◦ −w) + (180◦ − x) = 360◦ − (x+w) < 180◦.

Then	by	Euclid’s	Fifth	Postulate, it	would	follow	that m and n intersect	on	the	side	of y and z,
which	again	cannot	be, because	the	two	lines	are	parallel. The	only	remaining	option	is	that
x + w = 180◦. Therefore x = 180◦ − w. Because	we	know	that y = 180◦ − w, it	follows
that x = y. Hence, interior	alternating	angles	are	equal. Because β and y are	vertical	angles,
we	know	that β = y. It	is	similarly	seen	that α = x. We	deduce	that β = x, which	says	that
corresponding	angles	are	equal, and	that α = β, which	says	that	exterior	alternating	angles	are
equal.

The	proof	of	Proposition 1.2.3 very	much	depends	upon	Euclid’s	Fifth	Postulate, and	therefore
any	other	proposition	that	is	demonstrated	using	Proposition 1.2.3 must	also	depend	upon	Eu-
clid’s	Fifth	Postulate. For	example, Proposition 2.2.1, which	discusses	the	sum	of	the	angles	in
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a	triangle, uses	Proposition 1.2.3 in	its	proof. Thus, we	see	that	the	Fifth	Postulate	is	crucial	in
the	study	of	planar	geometry.
Among	other	things, Proposition 1.2.3 shows	that	our	definition	of	parallel	lines, which	was

simply	in	terms	of	non-intersection, corresponds	to	our	intuition	that	parallel	lines	“go	in	the
same	direction.”

Exercise 1.2.1. Find	angles x and y as	shown	in	Figure 1.2.11. The	lines m and n are
parallel.

y

x

m

n
45°

60°

Figure	1.2.11

Exercise 1.2.2. Find	angles α, β and γ as	shown	in	Figure 1.2.12. The	lines p and q are
parallel.

It	turns	out	that	the	converse	to	Proposition 1.2.3 is	also	true. That	is, if	two	lines	make	ap-
propriate	angles	with	a	given	line, then	they	are	parallel. More	precisely, we	have	the	following
proposition.

Proposition 1.2.4. Suppose	two	different	lines	intersect	a	third	line. If	the	two	lines	have	equal
interior	alternating	angles, or	equal	exterior	alternating	angles, or	equal	corresponding	angles,
then	the	two	lines	are	parallel.

Interestingly, even	though	Proposition 1.2.3 relies	crucially	on	Euclid’s	Fifth	Postulate, it	turns
out	that	Proposition 1.2.4 does	not	rely	upon	the	Fifth	Postulate	(and	is	therefore	true	in	other	ge-
ometries	for	which	the	first	four	postulates	hold, but	the	fifth	does	not). However, a	particularly
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γ
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α

p
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80° 115°

Figure	1.2.12

easy	demonstration	of	Proposition 1.2.4 can	be	 found	using	 the	Fifth	Postulate; this	demon-
stration	 is	 left	 to	 the	 reader	as	Exercise 2.2.1, where	 it	uses	 the	 fact, proved	 in	Section 2.2,
that	the	sum	of	the	angles	in	a	triangle	add	up	to 180◦. (See	Theorem 3.4.1	of	[WW98]	for	a
demonstration	of	Proposition 1.2.4 that	does	not	make	use	of	Euclid’s	Fifth	Postulate.)
An	immediate	consequence	of	Proposition 1.2.4 is	 the	following	result. First, we	need	the

following	standard	bit	of	terminology. Given	two	lines	in	the	plane, we	say	that	they	are per-
pendicular if	they	make	right	angles	with	each	other.

Proposition 1.2.5. Suppose	two	different	lines	are	both	perpendicular	to	a	third	line. Then	the
two	lines	are	parallel.

We	can	now	give	a	demonstration	of	Playfair’s	Axiom (Proposition 1.1.1). In	this	demonstra-
tion, and	in	other	subsequent	places, we	will	make	use	of	the	fact	that	if	we	are	given	a	linem
and	a	point A (either	on	or	off m), we	can	construct	a	line	through A that	is	perpendicular	to
m. We	take	this	property	to	be	axiomatic. Also, we	note	that	this	construction	is	very	easy	to
do	using	straightedge	and	compass, though	we	will	not	need	the	details	here.

Demonstration	of	Proposition 1.1.1. Suppose	thatm is	a	line, and	thatA is	a	point	not	onm.
We	need	to	show	two	things: (1)	there	is	a	line	through A that	is	parallel	to m; and	(2)	there	is
only	one	such	line.
To	show	Part (1), we	start	by	constructing	a	line	through A that	is	perpendicular	to m. Call

this	new	line n. Next, construct	a	line	through A that	is	perpendicular	to n (the	fact	that A is
on n causes	no	problem). Call	this	new	line p. See	Figure 1.2.13 (i). By	construction, we	see
that	both m and p are	perpendicular	to n. It	follows	from	Proposition 1.2.5 that m and p are
parallel. We	have	therefore	constructed	a	line	through A, namely p, that	is	parallel	to m.

To	show	the	Part (2), we	need	to	show	that	the	line p we	constructed	above	is	the	only	line
that	contains A and	is	parallel	to m. Let t be	any	line	that	passes	through A other	than p. See
Figure 1.2.13 (ii). Given	that t is	not	the	same	as p, then, as	seen	in	the	figure, it	cannot	be	that t
is	perpendicular	to n, because p is	perpendicular	ton. It	now	follows	that t andm do	not	make
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(i)                                                                       (ii)

Figure	1.2.13

equal	corresponding	angles	with n, because m makes	all 90◦ angles	with n, and t does	not
make 90◦ angles	withn. We	deduce	thatm and t are	not	parallel, because	if	they	were	parallel,
then	by	Proposition 1.2.3 it	would	follow	thatm and t would	have	equal	corresponding	angles
with n, which	they	do	not. It	follows	that p is	the	only	line	through A that	is	parallel	tom.

Exercise 1.2.3. We	stated	above	 that	 if	we	are	given	a	 line m and	a	point A, we	can
construct	a	line	through A that	is	perpendicular	to m. Show	that	there	is	only	one	such
line. The	demonstration	has	two	subcases, depending	upon	whether A is	on m or	not.

1.3 Distance

Planar	geometry	as	formulated	by	Euclid	rests, fundamentally, on	the	idea	that	there	are	things
called	points	and	things	called	lines, and	that	these	things	have	some	relation	to	each	other	(for
example, any	two	distinct	points	are	contained	in	a	unique	line). In	some	of	the	more	modern
approaches	to	geometry	other	fundamental	notions	have	also	come	into	play. One	of	the	ideas
that	has	proved	to	be	particular	useful, for	example	in	the	study	of	symmetry	(as	we	will	see	in
Chapters 4 and	5), is	the	notion	of	distance	between	points. Certainly, the	idea	of	lengths	of	line
segments	is	in	Euclid, and	hence	the	distance	between	the	endpoints	of	a	line	segment	is	implicit
in	Euclid, but	modern	mathematics	deals	with	the	concept	of	distance	more	explicitly. We	will
restrict	our	attention	to	the	distance	between	points	in	the	plane, though	it	is	also	possible	to
look	at	distance	in	other	situations.
There	are, in	fact, two	different	approaches	to	the	notion	of	distance	between	points. First,

we	could	use	Cartesian	coordinates, according	to	which	we	assign	every	point	in	the	plane	a
pair	of	numbers (x, y). (We	assume	the	reader	is	 familiar	with	such	coordinates.) We	could
then	define	 the	distance	between	 two	points (x1, y1) and (x2, y2) by	 the	standard	distance
formula

√
(x2 − x1)2 + (y2 − y1)2. (This	formula	follows	directly	from	the	Pythagorean	The-

orem.) However, given	that	we	are	not	going	to	be	using	coordinates	in	other	situations, this
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approach	to	distance	will	not	be	the	one	we	use. Alternatively, just	as	we	assumed	some	ax-
iomatic	properties	for	points	and	lines, we	can	simply	hypothesize	that	it	is	possible	to	assign
a	unique	distance	between	any	two	points	in	the	plane, and	that	this	measure	of	distance	satis-
fies	certain	properties. We	will	take	the	latter	approach, though	we	will	not	give	an	axiomatic
treatment	of	distance	(which	is	surprisingly	tricky).
SupposeA andB are	points	in	the	plane.We	then	assign	to	these	points	a	real	number	denoted

d(A,B), called	the distance betweenA and B. Among	the	properties	that	distance	satisfies	are
the	following, where A, B and C are	points	in	the	plane.

1. d(A,B) ≥ 0;

2. d(A,A) = 0, and d(A,B) ̸= 0 whenever A ̸= B;

3. d(A,B) = d(B,A);

4. d(A,B) ≤ d(A,C) + d(C,B).

The	first	three	of	these	properties	are	simple; the	fourth	(called	the	Triangle	Inequality)	takes	a
bit	more	of	an	explanation. Consider	a	triangle	with	vertices A, B and C, as	in	Figure 1.3.1.
Then	Property	(4)	says	that	the	length	of	the	side AB of	the	triangle	is	less	than	or	equal	to	the
sum	of	the	lengths	of	the	other	two	sides	of	the	triangle	(we	have	equality	only	if	the	triangle
is	“degenerate”). By	rearranging	the	letters, we	see	that	the	same	inequality	holds	for	the	other
two	sides	of	the	triangle	as	well. (Had	we	taken	the	approach	of	using	Cartesian	coordinates	to
define	distance	between	points, it	would	have	been	possible	to	prove	the	above	four	properties
using	the	distance	formula.)

A

B

C

Figure	1.3.1

Once	we	have	a	notion	of	distance	between	points, it	 is	possible	to	formulate	many	other
basic	geometric	concepts	such	as	lines, rays	and	line	segments	in	terms	of	distance. For	example,
suppose	we	are	given	two	points A and B in	the	plane.
Then	the	line	segment	from A to B is	the	collection	of	all	points X in	the	plane	such	that	the

equation d(A,X)+d(X,B) = d(A,B) holds. The	ray	fromA through B is	the	collection	of	all
pointsX in	the	plane	such	that	precisely	one	of	the	two	equationsd(A,X)+d(X,B) = d(A,B)
or d(A,B)+d(B,X) = d(A,X) holds. The	line	throughA and B is	the	collection	of	all	points
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X in	the	plane	such	that	precisely	one	of	the	three	equations d(A,X) + d(X,B) = d(A,B),
or d(A,B)+d(B,X) = d(A,X), or d(B,A)+d(A,X) = d(B,X) holds. (If	one	wants	to	be
completely	detailed	axiomatically—as	is	important	in	more	advanced	treatments	of	geometry—
there	are	a	number	of	possible	approaches	when	 it	comes	 to	 the	 relation	of	 the	concept	of
distance	to	the	concepts	of	points	and	lines: one	can	define	points	and	lines	axiomatically, then
construct	a	distance	function	from	the	axioms, and	then	show	that	our	formulation	of	lines	in
terms	of	distance	is	consistent	with	the	lines	as	given	by	the	axioms; alternatively, one	can	take
distance	as	 the	basic	axiomatically	defined	concept, then	use	 the	above	approach	 to	define
lines, and	then	show	that	lines	defined	in	this	way	behave	as	lines	ought	to; or, one	can	define
both	lines	and	distance	in	terms	of	coordinates, and	then	show	that	the	above	formulation	of
lines	in	terms	of	distance	is	valid. We	will	not	go	into	such	details	in	this	text.)
Circles	can	also	be	defined	using	the	notion	of	distance. Given	a	point A in	the	plane, and

a	non-negative	real	number r, then	the	circle with	center A and	radius r is	the	collection	of
all	points X in	 the	plane	 such	 that	 the	equation d(A,X) = r holds. It	 is	 even	possible	 to
compute	angles	strictly	in	terms	of	distance. Consider	the	triangle	with	vertices A, B and C,
shown	in	Figure 1.3.1. It	is	then	possible	to	compute	the	angles	at	each	of A, B and C using
only	the	lengths d(A,B), d(A,C) and d(B,C). The	method	for	such	calculations	uses	 the
Law	of	Cosines, studied	in	trigonometry. This	law	is	stated	in	Proposition 2.5.3, and	it	may	also
be	found	in	any	textbook	on	trigonometry. (If	you	are	unfamiliar	with	this	law, simply	ignore
the	formula	we	are	about	to	state; we	will	not	be	using	this	formula	again.) Using	the	Law	of
Cosines, the	formula	for	the	angle	at A is	seen	to	be

arccos

(
[d(B,C)]2 − [d(A,B)]2 − [d(A,C)]2

2d(A,B)d(A,C)

)
.

We	now	turn	to	an	issue	that	is	phrased	in	terms	of	distance	between	points, and	that	will	be	of
use	to	us	in	our	study	of	isometries	in	Chapter 4, which	in	turn	is	used	in	our	study	of	symmetry
in	Chapter 5. Suppose	we	are	given	two	points A and B in	the	plane. We	would	like	to	find	all
points	in	the	plane	that	are	equidistant	to A and B; that	is, we	want	to	find	all	points X in	the
plane	such	that d(X,A) = d(X,B). One	such	point	is	very	easy	to	find, namely	the	midpoint
of	the	line	segment AB. There	are, however, other	points	in	the	plane	that	are	equidistant	to
A and B as	well. The	following	proposition	tells	us	an	easy	way	to	find	all	such	points. In	this
proposition	we	use	 the	 following	terminology. Given	a	 line	segment AB, the perpendicular
bisector of	the	line	segment	is	the	line	that	contains	the	midpoint	of	the	line	segment, and	is
perpendicular	to	the	line	segment. See	Figure 1.3.2. As	is	standard, we	use	a	small	square	to
denote	a	right	angle	in	the	figure. We	can	now	state	our	result.

Proposition 1.3.1. Suppose	that A and B are	distinct	points	in	the	plane. If X is	a	point, then
d(X,A) = d(X,B) if	and	only	if X is	on	the	perpendicular	bisector	of AB.

The	demonstration	of	this	proposition	is	left	to	the	reader	in	Exercise 2.2.9 (which	is	put	off
till	Section 2.2, because	some	facts	about	congruent	triangles	are	needed).
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A

B

Figure	1.3.2



2
Polygons

2.1 Introduction

A polygon is	a	region	of	the	plane	that	is	bounded	by	a	finite	number	of	line	segments	that	are
glued	together. We	have	three	requirements	about	the	way	in	which	we	glue	the	line	segments
together.

(1) Line	segments	are	glued	endpoint-to-endpoint.

(2) Every	endpoint	of	a	line	segment	is	glued	to	precisely	one	other	endpoint	of	a	line	seg-
ment.

(3) No	two	line	segments	intersect	except	possibly	at	their	endpoints	where	they	are	glued.

Some	polygons	are	shown	in	Figure 2.1.1. Some	non-polygons	are	shown	in	Figure 2.1.2;
the	object	in	Part (i)	of	this	figure	has	edges	that	are	not	glued	endpoint-to-endpoint, the	object
in	Part (ii)	has	three	endpoints	of	line	segments	glued	together, and	the	object	in	Part (iii)	has
line	segments	intersecting	not	at	their	endpoints. (It	is	possible	to	look	at	polygons	with	self-
intersections, that	is, in	which	requirement	(3)	is	dropped, but	we	will	not	be	looking	at	such
polygons	in	this	text.)

For	each	polygon, the edges of	the	polygon	are	the	line	segments	that	bound	it; the	edges	are
sometimes	called	“sides,” though	we	will	mostly	avoid	that	term. The vertices (the	singular	of
which	is	“vertex”) of	a	polygon	are	the	points	where	edges	meet. For	example, the	pentagon
shown	in	Figure 2.1.1 (i)	has	five	vertices	and	five	edges.
It	is	not	hard	to	figure	out	what	all	polygons	are. Notice	that	all	the	polygons	shown	in	Fig-

ure 2.1.1 have	edges	that	form	a	“circuit.” That	is, if	you	start	at	one	edge, you	can	then	go	to
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(i)                                       (ii)                                                (iii)

Figure	2.1.1

(i)                                            (ii)                                         (iii)

Figure	2.1.2

one	of	the	edges	it	meets, and	from	there	to	the	next	edge, and	the	next, and	so	on	until	you
come	all	the	way	around	back	to	the	edge	that	you	started	with. In	fact, all	polygons	work	this
way, which	we	summarize	in	the	following	proposition, which	we	give	without	demonstration.

Proposition 2.1.1. Suppose	we	are	given	a	polygon.

1. The	vertices	of	the	polygon	can	be	labeled	as A1, A2, A3, . . . , An, where	the	edges	of
the	polygon	are A1A2, A2A3, A3A4, . . ., An−1An, An A1.

2. The	polygon	has	the	same	number	of	edges	as	vertices.

See	Figure 2.1.3 for	an	illustration	of	the	above	proposition	in	the	case	where n = 5. The
reader	might	reasonably	ask, in	light	of	Proposition 2.1.1 (1), why	we	did	not	just	define	polygons
to	be	the	sort	of	figure	given	by	the	proposition. The	answer	is	that	we	could	have	done	so, but	we
gave	the	definition	of	polygons	that	we	did	in	order	to	give	a	definition	that	is	more	similar	to	the
definition	of	polyhedra	in	Section 3.1. In	any	case, we	can	now	proceed	with	an	understanding
of	polygons	as	given	in	the	above	proposition.

Some	types	of	polygons	are	very	familiar, such	as	triangles, which	are	discussed	in	more	de-
tail	in	Section 2.2. Polygons	with	four	sides	are	referred	to	as quadrilaterals, of	which	some	of
the	more	familiar	types	are	squares, rhombuses, rectangles, parallelograms, and	trapezoids. A
square is	a	quadrilateral	in	which	all	four	edges	are	equal	and	all	four	angles	are	equal; a rhom-
bus is	a	quadrilateral	in	which	all	four	edges	are	equal, but	the	four	angles	are	not	necessarily
equal; a rectangle is	a	quadrilateral	in	which	all	four	angles	are	equal, but	the	four	edges	are
not	necessarily	equal; a parallelogram is	a	quadrilateral	in	which	both	pairs	of	opposite	edges
are	parallel; a trapezoid is	a	quadrilateral	in	which	one	pair	of	opposite	edges	is	parallel. An
example	of	each	of	these	types	of	quadrilateral	is	shown	in	Figure 2.1.4 (i)–(v); an	example	of	a
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A1

A5

A4

A3A2

Figure	2.1.3

quadrilateral	that	is	none	of	these	types	is	shown	in	Part	(vi)	of	the	figure. In	general, polygons
are	named	by	the	numbers	of	edges	that	they	have. A polygon	with	five	edges	is	called	a pen-
tagon, a	polygon	with	six	edges	is	called	a hexagon, a	polygon	with	eight	edges	is	called	an
octagon, etc. The	names	of	polygons	with	five	or	more	edges	are	based	on	Greek, rather	than
Latin, roots. A polygon	with n edges, where n is	an	integer	such	that n ≥ 3, is	called	an n-gon.

(i)                                        (ii)                                         (iii)

(iv)                                  (v)                                         (vi)

Figure	2.1.4

Exercise 2.1.1. [Used	in	Sections 2.3, 2.4 and	4.5] Suppose	that	a	parallelogram	has	at
least	one 90◦ angle. Show	that	all	four	angles	must	be 90◦, and	hence	the	parallelogram	is
a	rectangle. (Use	only	results	from	this	section	and	previous	sections.)
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Exercise 2.1.2. Suppose	that	a	hexagon	has	the	property	that	each	pair	of	opposite	edges
is	parallel.

(1) Show	that	opposite	angles	in	this	hexagon	are	equal.

(2) Must	it	be	the	case	that	opposite	edges	have	equal	lengths	in	this	hexagon? If	yes,
show	why. If	not, give	an	example.

2.2 Triangles

The	study	of	triangles	goes	back	to	the	ancient	world. Triangles	played, and	continue	to	play, a
central	role	in	geometry. There	are	many	important	results	about	triangles, of	which	we	have	the
space	to	mention	only	a	few. See	most	standard	geometry	texts	for	more	facts	about	triangles.
A triangle is	a	polygon	with	three	edges	(and	hence	three	vertices). If	a	triangle	has	vertices

A, B and C, we	denote	the	triangle	by △ABC. At	any	vertex	of	a	triangle, the	two	edges	of
the	triangle	that	contain	the	vertex	form	an	angle	that	is	inside	the	triangle, called	the interior
angle at	the	vertex. See	Figure 2.2.1. Because	interior	angles	are	the	most	commonly	used	types
of	angles	in	triangles, if	we	simply	refer	to	“the	angle”	at	a	vertex, we	will	always	mean	the
interior	angle	(and	similarly	for	other	polygons). If	we	mean	some	other	kind	of	angle, we	will
always	say	so	explicitly. Observe	that	each	edge	of	a	triangle	is	located	opposite	precisely	one
of	the	vertices	(and	hence	one	of	the	interior	angles)	of	the	triangle. We	use	the	notation |AB|

to	denote	the	length	of	the	edgeAB, and	we	use	the	notation ∡A to	denote	the	measure	of	the
angle	at A.

A

B

C

Figure	2.2.1

There	are	a	number	of	special	types	of	triangles. An equilateral triangle	has	all	three	edges
equal. An isosceles triangle	has	two	equal	edges. A right triangle	has	one	angle	a	right	angle	(that
is, a 90◦ angle). A right	triangle	can	have	only	one	right	angle. It	is	also	common	to	distinguish
between acute triangles (that	have	all	angles	less	than 90◦), and obtuse triangles (that	have	one
angle	greater	than 90◦).
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In	addition	to	the	interior	angle	at	each	vertex	of	a	triangle, we	can	also	form	another	angle
at	each	vertex, as	follows. At	each	vertex, extend	beyond	the	vertex	one	of	 the	edges	of	 the
triangle	containing	the	vertex, and	form	the	supplementary	angle to	the	interior	angle; this	angle
is	called	the exterior	angle at	the	vertex. In	Figure 2.2.2 (i)	we	see	a	triangle △ABC, with	the
interior	angle	at A denoted α, and	the	exterior	angle	at A denoted δ. Note	that	the	interior
and	exterior	angles	at	a	vertex	add	up	to 180◦. The	careful	reader	might	well	ask	what	would
happen	if	we	had	extended	the	other	possible	edge	at	each	vertex, resulting	in	different	exterior
angles. There	are	indeed	two	possible	exterior	angles	at	each	vertex, but	they	are	vertical	angles.
See	 Figure 2.2.2 (ii), where	 the	 two	possible	 exterior	 angles	 at A are	denoted δ and ϵ. By
Proposition 1.2.2 (2)	it	follows	that	the	two	choices	of	exterior	angle	are	equal, and	hence, it
does	not	matter	which	exterior	angle	we	choose.

A

B

C

α

δ
A

B

C

δ

ε

(i)                                                                           (ii)

Figure	2.2.2

We	are	now	ready	to	state	a	very	important	result	about	the	angles	in	a	triangle.

Proposition 2.2.1.

1. The	sum	of	the	interior	angles	of	a	triangle	is 180◦.

2. The	sum	of	the	exterior	angles	of	a	triangle	is 360◦.

Demonstration. Suppose	we	have	a	triangle△ABC. As	shown	in	Figure 2.2.3 (i), let α, β and
γ be	the	interior	angles	of	the	triangle, and	let x, y and z be	the	exterior	angles	of	the	triangle.

(1). As	shown	in	Figure 2.2.3 (ii), letn be	the	line	containing	the	verticesB andC. By	Playfair’s
Axiom (Proposition 1.1.1), there	is	a	line	through	vertexA that	is	parallel	ton. Call	this	new	line
m. Label	angles δ and ϵ as	shown	in	Figure 2.2.3 (ii). We	see	thatβ and δ are	interior	alternating
angles, and	that γ and ϵ are	interior	alternating	angles. By	Proposition 1.2.3 we	deduce	that
β = δ and γ = ϵ. Because δ, α and ϵ make	up	a	straight	line, we	have δ+ α+ ϵ = 180◦. It
follows	that β+ α+ γ = 180◦, which	is	what	we	wanted	to	prove.
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A

B
C

α

β γ

x
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z
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α

β γ
n

m
δ ε

(i)                                                                                (ii)

Figure	2.2.3

(2). We	know	that α + x = 180◦, that β + y = 180◦, and	that γ + z = 180◦. Hence
x = 180◦ − α, and y = 180◦ − β, and z = 180◦ − γ. Using	Part (1)	of	this	proposition, we
then	see	that x+ y+ z = (180◦ −α) + (180◦ −β) + (180◦ − γ) = 540◦ − (α+β+ γ) =
540◦ − 180◦ = 360◦.

The	proof	of	the	above	proposition	uses	Proposition 1.2.3 and	Proposition 1.1.1, both	of	which
rely	upon	Euclid’s	Fifth	Postulate. Indeed, Proposition 2.2.1 does	not	hold	in	spherical	or	hyper-
bolic	geometry, where	the	Fifth	Postulate	is	replaced	with	other	axioms	(see	Section 1.1 for	a
brief	mention	of	these	alternative	geometries).

Exercise 2.2.1. [Used	in	Section 1.2] Use	Proposition 2.2.1 (1)	to	demonstrate	Proposi-
tion 1.2.4.

Exercise 2.2.2. We	know	from	Proposition 2.2.1 that	the	angles	in	a	triangle	are	related	to
each	other; in	particular, we	could	not	take	three	arbitrary	angles, and	expect	there	to	be	a
triangle	with	those	three	angles. This	exercise	concerns	relationships	between	the	lengths
of	the	edges	of	a	triangle.

(1) Is	there	a	triangle	with	edges	of	lengths 2, 3 and 4? Explain	your	answer.

(2) Is	there	a	triangle	with	edges	of	lengths 2, 3 and 6? Explain	your	answer.

(3) What	can	you	say	about	the	relationship	between	the	lengths	of	the	edges	of	a	tri-
angle. In	particular, try	to	come	up	with	criteria	on	three	numbers a, b and c that
would	guarantee	that	there	exists	a	triangle	with	edges	of	length a, b and c. Explain
your	answer.
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What	does	it	mean	for	two	triangles	to	be	“the	same”? Clearly, if	 two	triangles	have	edges
of	different	lengths, or	angles	of	different	measures, then	the	two	triangles	are	not	the	same.
What	about	two	triangles	with	edges	that	have	the	same	lengths, and	angles	that	have	the	same
measures? For	example, in	Figure 2.2.4 we	see	two	triangles	that	have	the	same	lengths	of	edges
and	the	same	measures	of	angles	(in	this	case 30◦, 60◦ and 90◦). These	two	triangles	are	not	the
exact	same, because	they	are	located	in	different	places, but	they	are	“essentially	the	same.”
Similarly	to	what	we	said	about	angles	in	Section 1.2, we	say	that	two	triangles	are congruent,
if, intuitively, one	triangle	could	be	“picked	up	and	placed	precisely	on	top	of	the	other.” As
before, we	will	not	need	a	more	 formal	definition	of	congruence	here, and	will	 stick	 to	 the
intuitive	notion; the	concept	of	isometry, which	is	discussed	in	detail	in	Chapter 4, provides	one
rigorous	way	of	defining	congruence, though	we	will	not	have	the	space	to	provide	the	details.

A

A’
B

C
C’

B’

Figure	2.2.4

Suppose	that	triangles△ABC and△A ′B ′C ′ are	congruent, where	vertex A corresponds	to
vertex A ′, where	vertex B corresponds	to	vertex B ′, and	where	vertex C corresponds	to	vertex
C ′. See	Figure 2.2.4. Then |AB| = |A ′ B ′|, and |AC| = |A ′ C ′|, and |BC| = |B ′ C ′|, and
∡A = ∡A ′, and ∡B = ∡B ′, and ∡C = ∡C ′. The	converse	is	also	true. That	is, suppose
we	are	given	two	triangles △ABC and △A ′B ′C ′, and	we	know	that |AB| = |A ′ B ′|, that
|AC| = |A ′ C ′|, that |BC| = |B ′ C ′|, that ∡A = ∡A ′, that ∡B = ∡B ′, and	that ∡C = ∡C ′.
It	will	then	be	the	case	that	the	two	triangles	are	congruent.
Actually, we	can	do	better	 than	the	above	statement. We	just	asserted	that	 if	we	know	six

things	to	be	true	about	two	triangles	(namely	the	equality	of	the	lengths	of	the	three	edges, and
the	equality	of	the	measures	of	the	three	angles), then	the	triangles	will	be	congruent. It	turns	out,
though	this	is	by	no	means	obvious, that	certain	partial	knowledge	about	these	six	equalities
suffices	to	guarantee	that	two	triangles	are	congruent. The	following	proposition	is	one	such
result.

Proposition 2.2.2 (Side-Side-Side	Theorem). Suppose	that△ABC and△A ′B ′C ′ are	triangles.
Suppose	that |AB| = |A ′ B ′|, that |AC| = |A ′ C ′|, and	that |BC| = |B ′C ′|. Then ∡A =
∡A ′, and ∡B = ∡B ′, and ∡C = ∡C ′.

We	will	not	demonstrate	the	above	proposition, because	it	would	take	us	too	far	afield. The
Side-Side-Side	Theorem	says	that	if	two	triangles	have	edges	that	have	the	same	lengths, then
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the	two	triangles	are	congruent. Another	way	of	thinking	about	this	theorem	is	that	it	says	that
triangles	are	rigid, in	the	following	sense. Suppose	you	take	three	sticks, and	join	them	together
into	a	triangle. Even	if	you	were	to	join	the	sticks	with	hinges, the	triangle	could	not	be	de-
formed. If	triangles	were	not	rigid, then	knowing	the	lengths	of	the	edges	of	a	triangle	would	not
uniquely	determine	the	angles, and	it	would	then	be	possible	to	have	two	triangles	whose	edges
have	the	same	lengths, but	with	different	angles, and	that	would	contradict	the	Side-Side-Side
Theorem. By	contrast, if	you	were	to	take	four	sticks, and	join	them	together	with	hinges	into
a	quadrilateral, then	the	figure	could	be	deformed. See	Figure 2.2.5. The	fact	that	triangles	are
rigid, but	other	polygons	are	not, is	something	that	is	well	known	in	real	life. As	a	result, we
often	see	triangular	forms	used	in	construction	of	tresses	and	the	like.

Figure	2.2.5

The	Side-Side-Side	Theorem	is	not	the	only	result	that	guarantees	that	triangles	are	congruent.
Two	other	equally	useful	congruence	theorems	are	the	following.

Proposition 2.2.3 (Side-Angle-Side	Theorem). Suppose	that △ABC and △A ′B ′C ′ are	trian-
gles. Suppose	 that |AB| = |A ′ B ′|, that ∡A = ∡A ′, and	 that |AC| = |A ′ C ′|. Then
∡B = ∡B ′, and |BC| = |B ′ C ′|, and ∡C = ∡C ′.

Proposition 2.2.4 (Angle-Side-Angle	Theorem). Suppose	 that △ABC and △A ′B ′C ′ are	 tri-
angles. Suppose	 that ∡A = ∡A ′, that |AB| = |A ′ B ′|, and	 that ∡B = ∡B ′. Then
|BC| = |B ′ C ′|, and ∡C = ∡C ′, and |AC| = |A ′ C ′|.

We	will	not	demonstrate	the	above	two	congruence	theorems.

Exercise 2.2.3. Find	examples	to	show	that	there	is	no	“Angle-Side-Side	Theorem.” That	is,
find	two	triangles△ABC and△A ′B ′C ′ such	that ∡A = ∡A ′, that |AB| = |A ′ B ′|, and
that |BC| = |B ′ C ′|, and	yet	the	two	triangles	are	not	congruent. Exact	measurements	of
such	triangles	are	not	needed; a	sketch	of	the	triangles, together	with	a	description	of	what
you	mean, would	suffice.

Exercise 2.2.4. Is	there	an	“Angle-Angle-Side	Theorem”? Either	demonstrate	why	such	a
theorem	is	true, or	give	an	example	to	show	that	it	is	not	true.
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Congruence	of	triangles, and	the	above	three	congruence	theorems	in	particular, are	extremely
useful	in	proving	many	results	in	geometry. We	start	with	the	following	very	simple	results, but
we	will	 use	congruence	 in	proofs	of	other, more	 substantial, results	 later	on. The	 following
results, which	might	seem	so	obvious	that	they	do	not	need	proof, in	fact	need	proof	just	as	any
other	fact	in	geometry	that	is	not	taken	as	an	axiom.
Our	first	result	involves	parallelograms. Recall, stated	in	Section 2.1, that	a	parallelogram	is	a

quadrilateral	in	which	both	pairs	of	opposite	edges	are	parallel.

Proposition 2.2.5.

1. Opposite	edges	in	a	parallelogram	have	equal	lengths.

2. Opposite	angles	in	a	parallelogram	are	equal.

Demonstration. Suppose	that	we	have	parallelogram ABCD, as	seen	in	Figure 2.2.6 (i). By

definition, we	know	that	the	lines
←→
AB and

←→
DC are	parallel, and	that	the	lines

←→
AD and

←→
BC are

parallel. Draw	the	line	segment AC. See	Figure 2.2.6 (ii). We	then	have	the	triangles △ABC

and △CDA. Let	angles α, β, γ and δ be	as	shown	in	Figure 2.2.6 (ii). Observe	that α and

γ are	 interior	alternating	angles	 (because	 lines
←→
AB and

←→
DC are	parallel), and	 therefore	by

Proposition 1.2.3 we	know	that α = γ. Similarly, we	deduce	that β = δ, using	the	fact	that←→
AD and

←→
BC are	parallel.

(i)                                                                    (ii)    

A

D C

B A

D C

B

α

βγ

δ

Figure	2.2.6

We	now	claim	that △ABC and △CDA are	congruent, where	vertex A in △ABC corre-
sponds	to	vertex C in△CDA, where	vertex B in△ABC corresponds	to	vertexD in△CDA,
and	where	vertex C in △ABC corresponds	to	vertex A in △CDA. That	these	two	triangles
are	congruent	follows	from	the	Angle-Side-Angle	Theorem	(Proposition 2.2.4), and	the	fact	that
α = γ, that β = δ, and	that AC is	the	same	in	both	triangles. Because	the	two	triangles	are
congruent, we	deduce	that	corresponding	edges	have	the	same	lengths. That	is, we	conclude
that |AB| = |DC|, and	that |AD| = |BC|m, which	is	Part (1)	of	the	proposition. Part (2)	also
follows	from	the	congruence	of	the	two	triangles; details	are	left	to	the	reader.
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Exercise 2.2.5. Suppose	that	in	a	quadrilateral, both	pairs	of	opposite	edges	have	equal
lengths. Show	that	the	quadrilateral	is	a	parallelogram. (Be	careful	with	not	confusing	a	the-
orem	and	its	converse—this	fact	cannot	be	proved	by	simply	quoting	Proposition 2.2.5 (1).)

Exercise 2.2.6. Suppose	that	in	a	quadrilateral, a	pair	of	opposite	edges	are	parallel	and
have	equal	lengths. Show	that	the	quadrilateral	is	a	parallelogram.

Exercise 2.2.7. Show	that	the	two	diagonals	in	a	parallelogram	bisect	each	other.

As	a	consequence	of	Proposition 2.2.5 (1), we	can	deduce	the	following	result	about	parallel
lines. Recall	from	Section 1.2 that	two	lines	are	defined	to	be	parallel	if	they	do	not	intersect.
Our	intuitive	picture	of	parallel	lines, however, involves	more	than	just	that	two	lines	do	not
intersect, but	also	that	they	“keep	constant	distance	from	each	other.” We	can	now	show	in	the
following	proposition	that	this	intuitive	notion	is	in	fact	correct	for	parallel	lines	in	the	plane.
We	were	not	able	to	give	this	proposition	in	Section 1.2, where	we	first	discussed	parallel	lines,
because	we	need	congruent	triangles	to	prove	it. When	you	read	the	following	proposition, it
helps	to	consider	Figure 2.2.7.

m

n

A

C

B

D

Figure	2.2.7

Proposition 2.2.6. Supposem and n are	parallel	lines. LetA and B be	points	onm. Draw	lines
through A and B respectively	that	are	perpendicular	to n; let C and D be	the	points	where
these	perpendicular	lines	intersect n. Then |AC| = |BD|.

Demonstration. First, observe	that	because	the	lines
←→
AC and

←→
BD are	both	perpendicular	to

the	line n, then	they	are	parallel	to	each	other	(this	is	Proposition 1.2.5). Given	that m and n
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are	parallel, it	follows	that	the	quadrilateral ABCD is	a	parallelogram. We	now	apply	Proposi-
tion 2.2.5 (1)	to	this	parallelogram, to	deduce	that |AC| = |BD|.

Our	next	simple	result	involves	isosceles	triangles.

Proposition 2.2.7 (Pons	Asinorum). Suppose	that △ABC is	a	triangle. If |AB| = |AC|, then
∡B = ∡C.

Demonstration. We	are	given	the	triangle △ABC. We	now	claim	that △ABC is	congruent
with	itself, where	vertex B in △ABC corresponds	to	vertex C in △ABC, where	vertex C in
△ABC corresponds	to	vertex B in △ABC, and	where	vertex A in △ABC corresponds	to
vertex A in △ABC. That	 these	 two	 triangles	are	congruent	 follows	 from	the	Side-Side-Side
Theorem	(Proposition 2.2.2), and	the	fact	that |AB| = |AC|, and	that |BC| = |BC|. It	follows
that △ABC has	equal	angles	with	itself, where	the	angle	at B corresponds	to	the	angle	at C,
and	vice-versa	(the	angle	atA corresponds	to	itself, though	that	is	not	of	any	use). We	therefore
deduce	that	the	angles	opposite AB and AC are	equal, which	is	what	we	are	supposed	to
show. (It	may	seem	strange	that	we	are	applying	the	Side-Side-Side	Theorem	to	a	triangle	and
itself, rather	than	two	distinct	triangles, but	nothing	in	the	statement	of	this	theorem	says	that
the	two	triangles	under	consideration	have	to	be	distinct, though	they	most	often	are. However,
even	though	we	are	comparing	a	triangle	with	itself, we	really	are	proving	something, because
we	are	having	different	vertices	correspond	with	each	other	in	the	congruence.)

The	name	“Pons	Asinorum”	means	“Ass’	Bridge” in	Latin. There	are	various	explanations	for
this	name, some	referring	to	the	appearance	of	the	triangle	under	discussion, others	to	the	state
of	mind	of	those	trying	to	understand	the	result.
An	immediate	consequence	of	Pons	Asinorum	is	the	first	part	of	the	following	proposition,

which	again	is	very	familiar; the	second	part	of	the	proposition	follows	from	the	first	part, to-
gether	with	Proposition 2.2.1 (1).

Proposition 2.2.8.

1. All	three	angles	in	an	equilateral	triangle	are	equal.

2. Each	angle	in	an	equilateral	triangle	is 60◦.

Exercise 2.2.8. Suppose	we	are	given	a	triangle △ABC. Show	that	if ∡B = ∡C, then
|AB| = |AC| (so	that	the	triangle	is	isosceles).

Exercise 2.2.9. [Used	 in	Section 1.3] Use	congruent	 triangles	 to	demonstrate	Proposi-
tion 1.3.1.
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Exercise 2.2.10. Suppose	we	have	a	circle, and	suppose	thatA, B and C are	points	on	the
circle	such	that	the	line	segmentAB is	a	diameter	of	the	circle. Form	the	triangle△ABC.
See	Figure 2.2.8. Show	that	the	angle	at C is 90◦.

A B

C

Figure	2.2.8

It	is	important	not	to	get	overly	confident	about	congruence	theorems. Just	knowing	that	two
triangles	have	three	things	(edges	or	angles)	equal	does	not	always	guarantee	that	the	triangles
are	congruent. For	example, simply	knowing	that	two	triangles	have	the	same	angles	definitely
does	not	guarantee	that	the	triangles	are	congruent. In	Figure 2.2.9 we	see	two	triangles, labeled
△ABC and △A ′B ′C ′, that	have	the	same	angles, but	different	lengths	of	their	edges.

A A’

B

B’

C

C’

Figure	2.2.9

We	just	observed	 that	knowing	only	 the	angles	 in	a	 triangle	does	not	determine	what	 the
lengths	of	its	edges	are. However, even	though	two	triangles	with	the	same	angles	might	have
different	sizes, as	in	Figure 2.2.9, they	have	the	same	“shape.” The	following	proposition	makes
this	notion	of	the	same	shape	more	precise, by	looking	at	ratios	of	lengths	of	edges. First, we
make	the	following	definition. Two	triangles△ABC and△A ′B ′C ′ are	called similar if ∡A =
∡A ′, , and ∡B = ∡B ′, and ∡C = ∡C ′.
The	following	proposition, which	makes	precise	the	notion	that	similar	 triangles	“have	the

same	shape,” is	what	makes	the	concept	of	similarity	of	triangles	so	useful.
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Proposition 2.2.9. Suppose	that	triangles △ABC and △A ′B ′C ′ are	similar. Then

|AB|

|A ′ B ′|
=

|AC|

|A ′ C ′|
=

|BC|

|B ′ C ′|
;

equivalently, we	have

|AB|

|AC|
=

|A ′ B ′|

|A ′ C ′|
,

|AB|

|BC|
=

|A ′ B ′|

|B ′ C ′|
,

|AC|

|BC|
=

|A ′C ′|

|B ′ C ′|
.

The	demonstration	of	Proposition 2.2.9 will	be	delayed	until	Section 2.4, by	which	point	we
will	have	discussed	the	area	of	triangles, which	we	use	in	the	demonstration.
As	an	example	of	 the	use	of	Proposition 2.2.9, suppose	that	we	have	two	similar	 triangles

△ABC and △A ′B ′C ′. Suppose	 further	 that	we	 are	 given	 that	 the	 edges	 of △ABC have
lengths |AB| = 5, and |AC| = 6, and |BC| = 8; in △A ′B ′C ′ we	are	given	only	the	length
|A ′ C ′| = 20. Can	we	find	the	lengths	of	the	other	two	edges	of △A ′B ′C ′? We	can, using
Proposition 2.2.9. By	that	proposition, we	know	that

|AB|

|AC|
=

|A ′ B ′|

|A ′ C ′|
.

Hence, we	deduce	that
5

6
=

|A ′ B ′|

20
.

Solving	this	equation, we	see	that |A ′ B ′| =
50

3
. The	reader	can	use	the	same	type	of	calculation

to	see	that |B ′ C ′| = 15.

Exercise 2.2.11. A tree	casts	a	shadow	that	is 20 ft.	long. At	the	same	time	of	day, a 3 ft.
stick	casts	a 5 ft.	shadow. How	tall	is	the	tree?

Having	mentioned	similar	triangles, we	cannot	avoid	mentioning	one	of	the	most	important
uses	of	similar	triangles: trigonometry. Not	everyone	who	uses	trigonometry	recognizes	the	fun-
damental	 role	played	by	similar	 triangles	 in	 trigonometry, and	it	 is	 that	 role	 that	we	want	 to
discuss. The	study	of	trigonometry	treats	the	six	standard	trigonometric	functions, namely	sine,
cosine, tangent, secant, cosecant and	cotangent.
Let	us	look	at	the	sine	function	(the	other	five	functions	would	work	completely	similarly).

To	define	the	sine	function, we	need	the	following	terminology. Recall	that	a	right	triangle is	a
triangle	in	which	one	of	the	angles	is	a	right	angle. In	a	right	triangle, the	two	edges	that	form
the	right	angle	are	called	the sides of	the	triangle, and	the	edge	that	is	opposite	the	right	angle
is	called	the hypotenuse of	the	triangle. (The	distinction	between	sides	and	hypotenuse	holds
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only	in	right	triangles, not	in	other	triangles.) In	introductory	treatments	of	trigonometry, it	is
typical	to	define	the	sine	function	as	follows. Let α be	an	angle	between 0◦ and 90◦. We	want
to	compute	the	sine	of α, which	is	going	to	be	a	number	denoted sinα. We	compute sinα by
placing α in	a	right	triangle, as	in	Figure 2.2.10, and	then	letting sinα be	the	ratio	of	the	length
of	the	side	opposite α to	the	length	of	the	hypotenuse. That	is, we	let

sinα =
|opposite|

|hypotenuse|
.

α

opposite

hyp
oten
use

Figure	2.2.10

For	example, suppose	we	wanted	to	compute sin 45◦. We	can	place 45◦ in	an	isosceles	right
triangle. One	such	right	triangle	has	sides	of	length 1. Using	the	Pythagorean	Theorem	(assuming
the	reader	is	familiar	with	this	result, and	its	statement	can	be	found	in	Section 2.5 for	those
who	are	not), we	compute	that	the	hypotenuse	of	the	triangle	has	length

√
2. See	Figure 2.2.11.

It	follows	that sin 45◦ = 1√
2
.

1

1
2

45°

Figure	2.2.11

So	far	so	good. There	is, however, one	potentially	troubling	aspect	to	the	above	approach	to
defining	sine. Given	an	angle, we	defined	sine	of	the	angle	by	placing	the	angle	in	a	right	triangle,
and	taking	the	ratio	of	the	length	of	the	side	opposite	the	angle	to	the	length	of	the	hypotenuse.
There	are, of	course, different	possible	triangles	that	could	be	used. What	would	happen	if	the
ratio	of	the	length	of	the	side	opposite	the	angle	to	the	length	of	the	hypotenuse	in	one	right
triangle	containing	the	angle	were	not	equal	to	the	corresponding	ratio	in	another	right	triangle
containing	the	angle? If	that	were	to	happen, the	definition	of	sine	of	the	angle	would	be	invalid,
because	it	ought	only	to	depend	upon	the	angle	itself, and	nothing	else	(such	as	a	choice	of
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right	triangle). Well, it	turns	out	that	there	is	no	problem	in	the	choice	of	triangle, and	here	is	the
reason	why. Suppose	we	had	two	right	triangles	containing	an	angleα. Both	triangles	also	have	a
90◦ angle. Given	that	the	sum	of	the	angles	in	any	triangle	is 180◦ (by	Proposition 2.2.1 (1)), then
we	know	that	the	third	angle	in	each	of	the	two	triangles	is 90◦−α. Therefore, the	two	triangles
have	the	same	angles; hence	they	are	similar	triangles. It	now	follows	from	Proposition 2.2.9
that	the	ratio	of	the	length	of	the	side	opposite α to	the	length	of	the	hypotenuse	is	the	same	in
both	triangles, and	that	means	that	there	is	no	problem	in	our	definition	of	sine. The	same	type
of	argument	holds	for	the	other	trigonometric	functions.
We	note	that	although	the	trigonometric	functions	are	defined	in	terms	of	triangles, they	have

important	uses	in	many	area	beyond	the	study	of	triangles. For	example, the	trigonometric	func-
tions	are	used	to	describe	oscillatory	motion	(for	example, springs	and	pendulums), and	wave
phenomena	(for	example, sound	and	light).

2.3 General	Polygons

Having	discussed	triangles	in	Section 2.2, we	now	turn	to	polygons	with	more	than	three	edges.
Some	properties	of	triangles	have	analogs	for	all	polygons, and	others	do	not. As	we	mentioned
in	Section 2.2, one	property	of	triangles	that	does	not	hold	for	all	polygons	is	rigidity. Another
way	 to	 state	 the	 same	 fact	 is	 to	 say	 that	 the	analog	of	 the	Side-Side-Side	Theorem	 (Proposi-
tion 2.2.2)	does	not	hold	for	polygons	other	than	triangles. For	example, a	square	with	edges	of
length 1 and	a	rhombus	with	edges	of	length 1 have	all	edges	of	equal	length, and	yet	they	do
not	have	equal	angles. See	Figure 2.2.5.
On	the	other	hand, there	are	features	of	polygons	with	more	than	three	sides	that	do	not	appear

in	the	case	of	triangles. We	now	turn	to	one	such	issue. Consider	the	polygons	in	Figure 2.3.1.
There	 is	a	 fundamental	difference	between	 them: the	polygon	 in	Part (i)	has, intuitively, “no
indentations,” whereas	the	polygon	in	Part (ii)	does	have	an	indentation. It	is	not	very	convenient
technically	to	try	to	define	the	notion	of	 indentations	directly, so	we	capture	the	idea	of	not
having	 indentations	as	 follows. A polygon	is	called convex if	any	 two	points	 in	 the	polygon
are	joined	by	a	line	segment	entirely	contained	in	the	polygon. We	see	in	Figure 2.3.2 how
two	points	in	the	polygon	in	Figure 2.3.1 (ii)	are	joined	by	a	line	segment	that	is	not	entirely
contained	in	the	polygon, and	therefore	the	polygon	is	not	convex; the	fact	that	some	other	pairs
of	points	in	the	polygon	are	joined	by	line	segments	entirely	contained	in	the	polygon	does	not
make	the	polygon	satisfy	the	definition	of	convexity. By	contrast, the	polygon	in	Figure 2.3.1 (i)	is
convex. We	note	that	all	triangles	are	convex, so	the	distinction	between	convex	vs.	non-convex
did	not	arise	in	our	discussion	of	triangles, but	it	will	be	important	in	our	discussion	of	polygons
and	polyhedra.

As	was	the	case	for	triangles, at	any	vertex	of	a	polygon, the	two	edges	of	the	polygon	that
contain	the	vertex	form	an	angle	that	is	inside	the	polygon, called	the interior	angle at	the	vertex.
In	Figure 2.3.3 we	see	a	polygon, with	its	interior	angles	denoted α1, α2, α3, α4 and α5. We
will	shortly	define	exterior	angles	for	polygons.
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(i)                                                          (ii)

convex                                                 not convex

Figure	2.3.1

Figure	2.3.2

α1

α2
α3

α4
α5

Figure	2.3.3

One	of	the	things	interior	angles	are	useful	for	is	that	they	give	an	easy	way	of	determining
whether	or	not	a	polygon	is	convex. If	you	look	at	the	convex	polygon	pictured	in	Figure 2.3.1 (i),
you	will	notice	that	each	interior	angles	is	less	than 180◦; by	contrast, in	the	non-convex	polygon
pictured	in	Figure 2.3.1 (ii), one	of	the	interior	angles	is	greater	than 180◦. More	generally, we
have	the	following	result, the	demonstration	of	which	we	omit.

Proposition 2.3.1. A polygon	is	convex	if	and	only	if	all	its	interior	angles	are	less	than	or	equal
to 180◦.

We	now	 turn	 to	 the	question	of	 angle	 sums	 in	 polygons. It	 is	much	 simpler	 to	 deal	with
this	question	 for	convex	polygons, so	we	start	with	 that	case. We	know	that	 the	sum	of	 the
interior	angles	of	a	triangle	is 180◦, and	the	sum	of	the	exterior	angles	of	a	triangle	is 360◦ (see
Proposition 2.2.1). Is	there	an	analog	of	these	results	for	general	convex	polygons? To	answer	this
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question, we	first	need	to	define	exterior	angles	for	convex	polygons. It	turns	out	that	the	same
definition	that	worked	for	triangles	works	for	convex	polygons	in	general. More	specifically, at
each	vertex	of	a	convex	polygon, we	can	extend	beyond	the	vertex	one	of	 the	edges	of	 the
polygon	containing	the	vertex, and	form	the	supplementary	angle to	the	interior	angle, which
we	will	call	the exterior	angle at	the	vertex. In	Figure 2.3.4 we	see	a	convex	polygon, with	one
of	its	vertices	labeled A, with	the	interior	angle	at A denoted α, and	the	exterior	angle	at A
denoted β. As	was	the	case	for	triangles, the	interior	and	exterior	angles	at	a	vertex	add	up	to
180◦. (Also	just	as	for	triangles, it	would	make	no	difference	had	we	extended	the	other	possible
edge	at	each	vertex.)

α
β

A

Figure	2.3.4

BEFORE YOU READ FURTHER:

Try	to	figure	out	for	yourself	how	to	generalize	Proposition 2.2.1 for	an	arbitrary	convex
n-gon. That	is, given	a	convex n-gon, what	is	the	sum	of	its	interior	angles, and	what	is
the	sum	of	its	exterior	angles? (The	answers	might	involve	the	number n.)

To	see	how	we	might	generalize	Proposition 2.2.1 to	other	convex	polygons, let	us	look, for
example, at	the	angle	sums	for	the	octagon	shown	in	Figure 2.3.5. It	is	easy	to	see	that	each
interior	angle	is 135◦, and	each	exterior	angle	is 45◦. The	sum	of	the	interior	angles	is	therefore
8 · 135◦ = 1080◦, and	the	sum	of	the	exterior	angles	is 8 · 45◦ = 360◦. Interestingly, the	sum
of	the	exterior	angles	for	the	octagon	is	the	same	as	for	a	triangle, but	the	sum	of	the	interior
angles	for	the	octagon	is	more	than	for	a	triangle. As	seen	in	the	following	proposition, it	turns
out	that	the	sum	of	the	interior	angles	of	a	convex	polygon	depends	upon	the	number	of	edges
of	the	polygon, whereas	the	sum	of	the	exterior	angles	does	not	depend	upon	the	number	of
edges. The	demonstration	of	the	proposition	clarifies	why	this	result	holds.

Proposition 2.3.2.

1. The	sum	of	the	interior	angles	of	a	convex n-gon	is (n− 2)180◦.

2. The	sum	of	the	exterior	angles	of	a	convex n-gon	is 360◦.

Demonstration. Suppose	 that	 the	 convex n-gon P has	 interior	 angles α1, α2, α3, . . ., αn,
and	exterior	angles β1, β2, β3, . . ., βn. For	example, for	the	polygon	originally	shown	in	Fig-
ure 2.3.3 (i), we	see	the	exterior	angles	labeled	in	Figure 2.3.6 (i).
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Figure	2.3.5

α1

β1

α2

β2
α3 β3

α4

β4α5β5

(i)                                                                     (ii)

Figure	2.3.6

(1). It	is	possible	to	break	up	the	polygon P into n − 2 triangles, where	the	vertices	of	the
triangles	are	all	vertices	of	the	original	polygon. See	Figure 2.3.6 (ii)	for	one	way	of	doing	this.
(There	is	more	than	one	way	to	break	up	the	polygon	into	triangles, but	it	will	not	matter	which
way	is	choosen.) Using	Proposition 2.2.1 (1)	we	know	that	the	sum	of	the	angles	in	each	of	these
triangles	is 180◦. Because	there	are n− 2 triangles, the	sum	of	all	the	angles	in	all	the	triangles
is (n − 2)180◦. However, as	seen	in	Figure 2.3.6 (ii), putting	all	the	angles	in	all	the	triangles
together	is	the	same	as	putting	all	the	angles	in	the	original	polygon	together. Hence	the	sum	of
all	the	angles	in	the	original	polygon	is (n− 2)180◦.

(2). We	know	that αi + βi = 180◦ for	each i = 1, 2, 3, . . . , n. Therefore βi = 180◦ − αi

for	each i. We	then	use	Part (1)	of	this	proposition	to	see	that

β1 + β2 + β3 + · · ·+ βn = (180◦ − α1) + (180◦ − α2) + (180◦ − α3) + · · ·+ (180◦ − αn)

= (180◦ + 180◦ + 180◦ + · · ·+ 180◦︸ ︷︷ ︸
n times

)− (α1 + α2 + α3 + · · ·+ αn)

= n180◦ − (n− 2)180◦ = 2 · 180◦ = 360◦.
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We	now	turn	 to	angle	sums	in	non-convex	polygons. Consider	 the	polygon	shown	in	Fig-
ure 2.3.7 (i). The	interior	angles	at	vertices A, B, C, D, E and F are 135◦ each; the	interior
angles	at	vertices G and I are 90◦ each; and	the	interior	angle	at	vertex H is 270◦. The	sum
of	the	interior	angles	is	therefore 6 · 135◦ + 2 · 90◦ + 270◦ = 1260◦. Notice	that	the	poly-
gon	in	the	figure	has 9 edges. If	we	use n = 9 in	the	formula	given	in	Proposition 2.3.2 (1),
we	would	obtain (9 − 2)180◦ = 1260◦, which	is	precisely	the	sum	of	the	interior	angles	in
the	polygon	in	Figure 2.3.7 (i). Now, the	formula	in	Proposition 2.3.2 (1)	was	only	proved	for
convex	polygons, but	perhaps	it	holds	for	non-convex	polygons	as	well. The	proof	we	used	for
convex	polygons	does	not	work	for	non-convex	polygons. For	example, the	polygon	shown	in
Figure 2.3.7 (ii)	cannot	be	divided	up	into	triangles	in	the	same	way	that	we	did	in	the	proof	of
Proposition 2.3.2 (1). It	turns	out	that	another	proof	can	be	used. The	key	is	exterior	angles.

(i)                                                                             (ii)      

A

H I

BC

D

E

F G

Figure	2.3.7

How	do	we	deal	with	exterior	angles	of	non-convex	polygons? Simply	defining	them	as	we	did
for	convex	polygons	does	not	quite	work. Recall	that	we	defined	the	exterior	angle	at	the	vertex
of	a	convex	polygon	by	extending	beyond	the	vertex	one	of	the	edges	of	the	polygon	containing
the	vertex, and	 forming	 the	 supplementary	angle to	 the	 interior	angle, which	we	called	 the
exterior	angle	at	the	vertex. See	Figure 2.3.4. However, if	we	look	at	the	vertex	labeled H in
Figure 2.3.7 (i), we	see	that	extending	either	of	the	edges	containing	the	vertex	will	go	into	the
interior	of	the	polygon, a	situation	that	does	not	seem	quite	right	(at	least	upon	first	glance).
One	way	around	this	problem	is	to	recall	that	the	interior	and	exterior	angles	at	a	vertex	of	a
convex	polygon	can	be	related	not	only	geometrically, as	in	the	definition	of	exterior	angles,
but	in	terms	of	their	measure. More	precisely, the	measures	of	the	interior	and	exterior	angles	at
a	vertex	of	a	convex	polygon	add	up	to 180◦. Therefore, the	measure	of	an	exterior	angle	is	just
180◦ minus	the	measure	of	the	interior	angle. (We	stress	the	word	“measure”	here	to	emphasize
that	it	is	distinct	from	the	actual	angle, but, having	emphasized	it	here, we	will	revert	to	standard
terminology	and	not	mention	it	further.) In	the	non-convex	case, we	can	simply	take	this	relation
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between	interior	and	exterior	angles	as	a	definition. That	is, we define the exterior	angle at	the
vertex	of	any	polygon	(convex	or	not)	as 180◦ minus	the	interior	angle	at	the	vertex.
Let	us	look	at	the	polygon	in	Figure 2.3.7 (i). The	exterior	angles	at	verticesA, B, C,D, E and

F are 180◦ − 135◦ = 45◦ each; the	exterior	angles	at	vertices G and I are 180◦ − 90◦ = 90◦

each; and	the	exterior	angle	at	vertex H is 180◦ − 270◦ = −90◦. It	may	seem	strange	to	obtain
a	negative	exterior	angle	at	vertex H, but	look	how	nicely	it	works	out. The	sum	of	the	exterior
angles	of	the	polygon	in	Figure 2.3.7 (i)	is 6 · 45◦ +2 · 90◦ − 90◦ = 360◦. This	sum	is	precisely
the	sum	of	exterior	angles	for	convex	polygons, as	given	in	Proposition 2.3.2 (2). It	turns	out, as
we	will	see	in	Proposition 2.3.3 below, that	the	same	formulas	for	sums	of	interior	and	exterior
angles	that	work	for	convex	polygons	also	work	for	non-convex	polygons—as	long	as	we	define
exterior	angles	for	non-convex	polygons	as	we	did, and	accept	the	fact	that	exterior	angles	could
be	negative	as	well	as	positive.
Before	we	turn	to	Proposition 2.3.3, let	us	look	more	closely	at	the	issue	of	negative	vs.	positive

exterior	angles. The	key	is	to	recall	that, as	discussed	in	Section 1.2, we	distinguished	between
clockwise	vs.	counterclockwise	angles, with	the	former	having	positive	degree	measure, and
the	latter	having	negative	degree	measure. Look	at	the	polygon	shown	in	Figure 2.3.8 (i). Think
of	the	edges	as	going	around	the	polygon	in	the	clockwise	direction, as	indicated	by	the	arrows.
We	will	once	again	obtain	exterior	angles	by	extending	edges, as	we	did	for	convex	polygons,
but	 this	 time	we	will	always	extend	 the	edge	 that	comes	before	a	vertex	 (where	“before”	 is
with	respect	to	going	around	the	polygon	in	the	clockwise	direction). We	start	by	looking	at	the
vertex	labeledA. The	interior	angle	at	this	vertex	is	less	than 180◦. In	Figure 2.3.8 (ii)	we	extend
the	edge	containing A that	comes	before A. We	can	then	look	at	the	angle	from	the	extended
edge	to	the	edge	that	comes	after A. This	angle	is	clockwise, and	is	therefore	a	positive	angle.
This	angle	is	precisely	equal	to 180◦ minus	the	interior	angle	at A. Next, we	look	at	the	vertex
labeled B. The	interior	angle	at	this	vertex	is	greater	than 180◦. In	Figure 2.3.8 (ii)	we	extend
the	edge	containing B that	comes	before B. We	can	then	look	at	the	angle	from	this	extended
edge	to	the	edge	that	comes	after B. This	angle	is	counterclockwise, and	is	therefore	a	negative
angle. This	angle	is	again	precisely	equal	to 180◦ minus	the	interior	angle	at B. In	both	cases,
we	see	that	it	is	possible	to	give	a	geometric	meaning	to	the	exterior	angle, as	long	as	we	take
into	account	the	difference	between	clockwise	vs.	counterclockwise	angles.

We	are	now	ready	for	the	following	proposition, which	generalizes	Proposition 2.3.2.

Proposition 2.3.3.

1. The	sum	of	the	interior	angles	of	an n-gon	is (n− 2)180◦.

2. The	sum	of	the	exterior	angles	of	an n-gon	is 360◦.

Demonstration. Suppose	we	have	an n-gon P as	shown	in	Figure 2.3.9 (i), with	vertices A1,
A2, A3, . . ., An, and	with	interior	angles α1, α2, α3, . . ., αn. We	let β1, β2, β3, . . ., βn be
the	exterior	angles. We	will	first	show	that	Part (2)	holds, and	then	show	that	Part (1)	holds	by
using	Part (2).
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(2). As	shown	in	Figure 2.3.9 (ii), we	extend	every	edge	of P in	the	clockwise	direction, and
label	the	exterior	angles. Observe	that	the	angle	from	the	extended	edge	at A1 to	the	extended
edge	at A2 is	equal	to	the	exterior	angle	at A1, which	is	denoted β1. Similarly, the	angle	from
the	extended	edge	atA2 to	the	extended	edge	atA3 is	equal	to	the	exterior	angle	atA2, which	is
denoted β2. Hence, the	angle	from	the	extended	edge	atA1 to	the	extended	edge	atA3 is	equal
to β1 + β2. By	the	same	argument, the	angle	from	the	extended	edge	at A1 to	the	extended
edge	at A4 is	equal	to β1 +β2 +β3. If	we	keep	going	all	the	way	around	the	polygon, we	see
that	the	angle	from	the	extended	edge	atA1 to	itself, going	all	the	way	around 360◦, is	equal	to
β1 +β2 +β3 + · · ·+βn. Hence β1 +β2 +β3 + · · ·+βn = 360◦. (Note	that	this	argument
works	only	because	the	edges	of	the	polygon	do	not	intersect	each	other; if	they	were	allowed
to	intersect	each	other, the	angle	from A1 to	itself	after	going	all	the	way	around	the	polygon
might	be	twice 360◦, or	three	times 360◦, etc.)

(1). This	part	of	 the	demonstration	 is	a	backwards	version	of	 the	demonstration	of	Propo-
sition 2.3.2 (2). We	know, by	definition, that βi = 180◦ − αi for	each i = 1, 2, 3, . . . , n.
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Therefore αi = 180◦ − βi for	all i. We	then	use	Part (2)	of	this	proposition	to	see	that

α1 + α2 + α3 + · · ·+ αn = (180◦ − β1) + (180◦ − β2) + (180◦ − β3) + · · ·+ (180◦ − βn)

= (180◦ + 180◦ + 180◦ + · · ·+ 180◦︸ ︷︷ ︸
n times

)− (β1 + β2 + β3 + · · ·+ βn)

= n180◦ − 360◦ = n180◦ − 2 · 180◦ = (n− 2)180◦.

Exercise 2.3.1. Show	that	a	quadrilateral	has	at	most	one	interior	angle	that	is	greater	than
180◦.

Exercise 2.3.2. Recall, stated	in	Section 2.1, that	a	rectangle is	defined	to	be	a	quadrilateral
in	which	all	four	angles	are	equal.

(1) Show	that	all	four	angles	in	a	rectangle	are 90◦.

(2) Show	that	every	rectangle	is	a	parallelogram.

(3) Show	that	opposite	edges	in	a	rectangle	have	equal	lengths.

Exercise 2.3.3. Suppose	that	a	quadrilateral	has	two	pairs	of	equal	adjacent	angles. Show
that	the	quadrilateral	is	a	trapezoid.

Exercise 2.3.4. Show	that	any	parallelogram	is	convex.
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Exercise 2.3.5. [Used	in	Section 4.5] Suppose	that	a	quadrilateral	has	two	opposite	edges
that	have	equal	 lengths, and	 that	 these	 two	edges	are	both	perpendicular	 to	one	of	 the
edges	that	is	in	between	them. The	goal	of	this	exercise	is	to	show	that	the	quadrilateral	is
a	rectangle. We	outline	two	demonstrations, one	using	congruent	triangles	(in	steps	(1)–(3)
below), and	the	other	using	similar	triangles	(in	steps	(4)–(8)	below); the	reader	is	asked	to
fill	in	the	details	of	each	step.
Suppose	that ABCD is	a	quadrilateral. Suppose	that |AD| = |BC|, and	that	both AD

and BC are	perpendicular	to AB. See	in	Figure 2.3.10. We	now	proceed	as	follows.

(1) Show	that	triangles△ABC and△ABD are	congruent. Deduce	that |AC| = |BD|.

(2) Show	that	triangles △ACD and △BCD are	congruent. Deduce	that ∡D = ∡C.
(3) By	Proposition 2.3.3 (1)	we	 know	 that	 the	 sum	of	 the	 angle	 in ABCD is 360◦.

Deduce	that ∡C = 90◦ and ∡D = 90◦. It	follows	that	all	four	angles	in	the	quadri-
lateral	are	equal, and	hence	the	quadrilateral	is	a	rectangle.

(4) We	now	give	another	demonstration	of	the	fact	that	the	quadrilateral	is	a	rectangle.
As	a	first	step, we	want	to	show	that	the	quadrilateral	is	a	parallelogram. It	follows
from	Proposition 1.2.5 that AD and BC are	parallel. Now	suppose	that AB and
CD are	not	parallel. Then	extend	them	until	they	meet, say	in	point P. We	will	arrive
at	a	logical	contradiction.

(5) Show	that	the	triangles △ADP and △BCP are	similar.

(6) Deduce	that
|AD|

|BC|
=

|AP|

|BP|
.

(7) Use	 the	 fact	 that |AP| > |BP| to	deduce	 that |AD| > |BC|. Explain	why	 this
is	a	logical	impossibility, given	the	hypotheses	of	this	exercise. Deduce	that AB is
parallel	to CD, and	hence	the	quadrilateral	is	a	parallelogram.

(8) Now	use	Exercise 2.1.1 to	show	that	the	quadrilateral	is	a	rectangle.

Polygons	can	be	very	irregular	looking, for	example, the	polygon	shown	in	Figure 2.3.7 (ii).
We	now	want	to	turn	our	attention	to	polygons	in	which, as	much	as	possible, one	point	looks
like	any	other	point. A polygon	is	a regular	polygon if	the	following	two	conditions	hold: (1)
all	edges	have	the	same	length; (2)	all	interior	angles	are	equal. For	example, a	square	and	an
equilateral	triangle	are	both	regular	polygons. That	the	first	part	of	the	above	definition	does	not
alone	suffice	can	be	seen	by	considering	a	rhombus, in	which	all	edges	have	the	same	length,
but	not	all	interior	angles	are	equal; a	rhombus	is	not	something	we	wish	to	call	regular.
A square	is	a	regular	polygon	that	has	four	edges. Is	there	a	regular n-gon	for	each	possible

n? The	answer	is	yes. In	Figure 2.3.11 we	see	a	regular	triangle	(also	known	as	an	equilateral
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A B

D C

Figure	2.3.10

triangle), a	regular	quadrilateral	(also	known	as	a	square), a	regular	pentagon, a	regular	hexagon,
a	regular	heptagon	(which	has	seven	edges)	and	a	regular	octagon. In	general, for	a	given	positive
integern (which	is	greater	than	or	equal	to	three), we	can	make	a	regularn-gon	as	follows. First,
draw	a	circle. (The	radius	of	the	circle	does	not	matter; different	choices	of	radius	will	yield
differently	sized	polygons, but	the	size	of	polygons	does	not	matter	to	us	here.) Next, calculate
360◦/n. Then	draw n rays	from	the	center	of	the	circle, where	the	rays	form	angles	of 360◦/n
between	them. See	Figure 2.3.12 (i). The n rays	intersect	the	circle	in n points. We	take	these
points	to	be	the	vertices	of	a	polygon, which	we	then	construct	by	joining	these	vertices	with
edges. The	polygon	thus	constructed	is	a	regular n-gon. See	Figure 2.3.12 (ii). We	mention	that
this	construction	of	a	regular n-gon	is	not	a	classical	straightedge	and	compass	construction
of	the	sort	used	in	ancient	Greek	mathematics, but	there	is	no	need	for	us	to	restrict	ourselves
to	such	constructions. (It	 turns	out	 that	 it	 is	not	possible	 to	construct	all	 regular	polygons	 in
the	ancient	Greek	manner.) Observe	 that	 for	 the	 regular	polygons	constructed	by	 the	above
method, the	vertices	all	lie	on	a	circle. It	turns	out	that	any	regular	polygon, no	matter	how	it
was	constructed, has	all	its	vertices	on	a	circle.

As	we	see	in	the	following	proposition, the	angles	in	a	regular	polygon	are	determined	by	the
number	of	edges	in	the	polygon. This	result	will	be	useful	to	us	in	Section 3.2.

Proposition 2.3.4.

1. Each	interior	angle	of	a	regular n-gon	is
(n− 2)180◦

n
.

2. Each	exterior	angle	of	a	regular n-gon	is
360◦

n
.

Demonstration. Both	parts	of	this	proposition	follow	easily	from	Proposition 2.3.3. All	interior
angles	in	a	regular	polygon	are	equal, and	so	each	interior	angle	equals	the	sum	of	the	interior
angles, which	is (n−2)180◦, divided	byn. A similar	consideration	holds	for	exterior	angles.

The	following	proposition	now	follows	easily	from	what	we	have	just	seen.
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Figure	2.3.11

(i)                                                            (ii)

Figure	2.3.12

Proposition 2.3.5. Every	regular	polygon	is	convex.

Demonstration. It	 follows	from	Proposition 2.3.4 (1)	 that	 the	interior	angles	in	every	regular
polygon	are	less	than 180◦. We	now	use	Proposition 2.3.1 to	deduce	that	every	regular	polygon
is	convex.

In	Table 2.3.1 we	give	the	values	of	the	interior	angles	of	some	of	the	regular	polygons, ob-
tained	by	plugging	in	the	appropriate	values	of n into	the	formula	given	in	Proposition 2.3.4 (1).

2.4 Area

We	start	this	section	with	a	discussion	of	the	areas	of	polygons. Our	discussion	of	area	ultimately
relies	upon	three	basic	ideas	concerning	area, which	we	assume	without	proof: (1)	a	rectangle
that	has	width x and	height y has	area xy; (2)	congruent	shapes	have	equal	areas; and	(3)	if	a
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Regular	Polygon Number	of	Edges	(n) Interior	Angle
equilateral	triangle 3 60◦

square 4 90◦

regular	pentagon 5 108◦

regular	hexagon 6 120◦

regular	heptagon 7 128.57◦

regular	octagon 8 135◦

Table	2.3.1

shape	is	broken	up	into	a	finite	number	of	pieces	that	together	exactly	fill	up	the	original	shape,
then	the	area	of	the	original	shape	is	the	sum	of	the	areas	of	the	pieces.
In	the	following	proposition, we	give	formulas	for	the	areas	of	triangles, trapezoids	and	paral-

lelograms	(the	last	two	of	which, if	the	reader	needs	reminding, are	defined	in	Section 2.1). In
order	to	state	these	formulas, we	need	to	define	the	notion	of	an	altitude	in	each	of	these	types
of	figures. In	all	these	case, the	common	idea	is	as	follows. Suppose	we	have	a	line m and	a
point P that	is	not	on m. The altitude from P to m is	the	line	segment	that	is	perpendicular	to
m, and	has	one	endpoint	in m, and	the	other	endpoint	at P. See	Figure 2.4.1.

m

P

al
tit
ud
e

Figure	2.4.1

Suppose	we	have	a	triangle, and	we	choose	an	edge	of	the	triangle. The altitude perpendicular
to	that	edge	is	the	altitude	from	the	vertex	opposite	the	edge	to	the	line	containing	the	edge.
In	the	triangle △ABC shown	in	Figure 2.4.2 (i), we	see	the	altitude, labeled h, perpendicular
to	edge AC. In	Figure 2.4.2 (ii)	we	see	that	the	altitude	perpendicular	to	the	edge	of	a	triangle
need	not	be	inside	the	triangle. A triangle	has	three	distinct	altitudes, one	perpendicular	to	each
edge, and	these	three	altitudes	will	in	general	not	have	the	same	lengths. An	interesting	fact	is
that	in	any	triangle	(even	an	obtuse	one), the	lines	containing	the	three	altitudes	meet	in	a	single
point, called	the orthocenter of	the	triangle; see	[WW98, Section	4.6]	for	more	details.

Next, suppose	we	have	a	 trapezoid. The altitude of	 the	 trapezoid	 is	constructed	by	 taking
any	point	on	one	of	the	two	parallel	edges, and	constructing	the	altitude	from	that	point	to	the
other	parallel	edge. See	Figure 2.4.3 (i). A trapezoid	has	many	altitudes, but	 it	 follows	 from
Proposition 2.2.6 that	they	all	have	the	same	length. In	a	parallelogram, we	can	construct	the
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Figure	2.4.2

altitudes	perpendicular	to	each	pair	of	edges, just	as	we	constructed	the	altitude	of	a	trapezoid
(which	has	only	one	pair	of	parallel	 edges). A parallelogram	has	 two	distinct	 altitudes, one
perpendicular	to	each	pair	of	parallel	edges, and	these	two	altitudes	will	in	general	not	have	the
same	lengths. See	Figure 2.4.3 (ii)	for	one	of	the	altitudes	of	a	parallelogram.

h h

(i)                                                              (ii)

Figure	2.4.3

We	can	now	state	our	formulas	concerning	areas.

Proposition 2.4.1.

1. Suppose	that	a	parallelogram	has	an	edge	of	length b, and	the	altitude	perpendicular	to
that	edge	of	length h. Then	the	area	of	the	parallelogram	is bh.

2. Suppose	that	a	trapezoid	has	parallel	edges	of	lengthm1 andm2, and	altitude	of	length

h. Then	the	area	of	the	trapezoid	is
m1 +m2

2
h.

3. Suppose	that	a	triangle	has	an	edge	of	length b, and	altitude	perpendicular	to	that	edge

of	length h. Then	the	area	of	the	triangle	is
1

2
bh.

Demonstration.

(1). The	basic	idea	is	to	cut	up	our	parallelogram, and	rearrange	it	into	a	rectangle. More	pre-
cisely, suppose	that	we	have	a	parallelogram	with	verticesA, B,C andD, such	that |CD| = b,
and	that	the	altitude	perpendicular	to CD has	length h. See	Figure 2.4.4 (i). Draw	the	lines
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through A and B respectively	 that	 are	perpendicular	 to	 the	 line	containing CD; let E and
F respectively	be	 the	points	of	 intersection	of	 these	 lines	with	 the	 line	containing CD. Fig-
ure 2.4.4 (ii).

h

AB

C Db

h h

AB

C F D E

(i)                                                                          (ii)       

Figure	2.4.4

Observe	that BF and AE are	parallel, because	of	Proposition 1.2.5. Also, we	know	that AB

and F E are	parallel	by	hypothesis. Hence	that ABFE is	a	parallelogram. Moreover, because
BF and AE are	both	perpendicular	to F E, we	see	by	Exercise 2.1.1 that ABFE is	a	rectangle.
Next, by	using	Proposition 2.2.5 (1)	we	know	that |AB| = |CD|, and	that |AD| = |BC|. It

follows	from	Proposition 2.2.6 that |BF| = |AE|. Moreover, because BC andAD are	parallel,
and BF and AE are	parallel	as	noted	above, it	can	be	seen	that ∡CBF = ∡DAE (a	detailed
demonstration	of	this	equality	uses	Proposition 1.2.3; we	leave	these	details	to	the	reader). It	then
follows	from	the	Side-Angle-Side	Theorem	(Proposition 2.2.3)	that	triangles△CBF and△DAE

are	congruent. Hence, these	two	triangles	have	the	same	area.We	deduce	that	the	parallelogram
ABCD has	the	same	area	as	the	rectangleABFE. We	can	think	of	the	edgeAB as	the	base	of
the	rectangleABFE, andAE as	the	altitude	of	this	rectangle. Using	the	observations	at	the	start
of	this	paragraph, we	see	that |AB| = b, and	it	follows	from	Proposition 1.2.5 that |AE| = h.
Hence	the	area	of	the	rectangle ABFE is bh. It	follows	that	the	parallelogram ABCD has	area
bh.

(2). The	reader	is	left	to	provide	this	demonstration	in	Exercise 2.4.1.

(3). Suppose	that	we	have	a	triangle△ABC, that |AC| = b, and	the	altitude	perpendicular	to
AC has	length h. See	Figure 2.4.5 (i). We	now	form	a	parallelogram	by	drawing	the	line	through
B that	is	parallel	toAC, and	drawing	the	line	throughC that	is	parallel	toAB (Playfair’s	Axiom
(Proposition 1.1.1)	guarantees	that	we	can	draw	these	lines). Let D be	the	point	of	intersection
of	the	two	new	lines, so	that ABCD is	a	parallelogram. Figure 2.4.5 (ii).

It	is	evident	that	the	parallelogramABCD has	edgeAC as	its	base, and	has	altitude	of	length
h. By	Part (1)	of	this	proposition, we	know	that	the	area	of	the	parallelogram	is bh. By	using
Proposition 2.2.5 (1)	we	know	that |AB| = |CD|, and	that |AC| = |BD|. It	 then	 follows
from	 the	 Side-Side-Side	Theorem	 (Proposition 2.2.2)	 that	 triangles △ABC and △BCD are
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Figure	2.4.5

congruent. Hence, these	two	triangles	have	the	same	area, and	so	each	has	half	the	area	of	the

parallelogram ABCD. We	deduce	that	the	area	of	triangle △ABC is
1

2
bh.

Observe	that	if	we	think	of	a	triangle	as	a	degenerate	trapezoid	in	which	one	of	the	parallel
edges	has	length	zero, then	the	formula	for	the	area	of	a	triangle	(Part (3)	of	the	above	propo-
sition)	follows	immediately	from	the	formula	for	the	area	of	a	trapezoid	(Part (2)	of	the	above
proposition).
An	immediate	consequence	of	Proposition 2.4.1 is	the	following	result. See	Figure 2.4.6 for

an	illustration	of	this	fact.

Proposition 2.4.2.

1. Suppose	that	two	parallelograms	have	an	edge	of	the	same	length, and	have	the	altitudes
perpendicular	to	those	edges	having	the	same	length. Then	the	parallelograms	have	the
same	area.

2. Suppose	 that	 two	 triangles	have	an	edge	of	 the	 same	 length, and	have	 the	altitudes
perpendicular	to	those	edges	of	the	same	length. Then	the	triangles	have	the	same	area.

h

b b

h

Figure	2.4.6

Exercise 2.4.1. [Used	in	This	Section] Demonstrate	Proposition 2.4.2 (2).
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Exercise 2.4.2. Suppose	that	triangles △ABC and △A ′B ′C ′ are	similar. Let Q and Q ′

respectively	denote	the	areas	of △ABC and △A ′B ′C ′. Show	that

Q

Q ′ =
|AB|

2

|A ′ B ′|
2 .

We	now	have	formulas	for	the	areas	of	rectangles, triangles	parallelograms	and	trapezoids.
What	about	more	complicated	polygons? It	is	not	possible	to	have	a	simple	formula	to	cover
each	possible	type	of	polygon. However, it	is	always	possible	to	find	the	area	of	any	polygon
by	chopping	it	up	into	simple	shapes	(for	example, rectangles	and	triangles), figuring	out	the
area	of	each	of	the	pieces, and	then	adding	the	areas	of	the	pieces	up. See	Figure 2.4.7 for	an
example	of	a	complicated	polygon	chopped	up	into	rectangles	and	triangles.

Figure	2.4.7

Exercise 2.4.3. Find	the	areas	of	the	polygons	shown	in	Figure 2.4.8.

We	remind	the	reader	that	the	perimeter of	a	polygon	is	the	sum	of	the	lengths	of	its	edges.

Exercise 2.4.4. Show	that	if	two	rectangles	have	the	same	area	and	the	same	perimeter,
then	they	have	the	same	dimensions. (This	one	uses	some	algebra.)
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(i)                                                   (ii)                                                 (iii)

2
3

2

2

1

1

2 2

2

2 2

Figure	2.4.8

Exercise 2.4.5.

(1) Find	two	polygons	all	of	whose	edges	have	integer	lengths, which	have	the	same
areas	and	same	perimeters, but	that	are	not	congruent.

(2) If	the	two	convex	polygons	you	found	in	Part (1)	were	not	convex, find	two	convex
polygons	all	of	whose	edges	have	integer	lengths, which	have	the	same	areas	and
same	perimeters, but	that	are	not	congruent.

Exercise 2.4.6. A kite is	a	quadrilateral	that	has	two	pairs	of	adjacent	edges	with	equal
lengths. We	call	the	diagonal	that	has	one	pair	of	adjacent	edges	with	equal	lengths	on	one
side	and	the	other	pair	on	the	other	side	the cross	diagonal; the	other	diagonal	is	called
the main	diagonal. (The	nomenclature	in	this	exercise	is	not	standardized.) For	the	sake
of	this	exercise, assume	that	all	kites	under	discussion	are	convex	(that	obviates	the	need
considering	different	subcases), though	there	are	also	non-convex	kites.

(1) Show	that	the	main	diagonal	in	a	kite	breaks	the	kite	into	two	congruent	triangles.

(2) Show	that	the	main	diagonal	in	a	kite	bisects	each	of	the	angles	at	its	endpoints.

(3) Show	that	the	main	diagonal	in	a	kite	bisects	the	cross	diagonal.

(4) Show	that	the	cross	diagonal	in	a	kite	is	perpendicular	to	the	main	diagonal.

(5) Show	that	the	area	of	a	kite	is	the	one	half	the	product	of	the	lengths	of	the	diagonals.

We	can	apply	the	concept	of	area	to	regular	polygons, starting	with	the	following	exercise.
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Exercise 2.4.7. Find	the	area	for	each	of	the	following	regular	polygons.

(1) An	equilateral	triangle	with	edges	of	length 1.

(2) A regular	hexagon	with	edges	of	length 1.

(3) A regular	octagon	with	edges	of	length 1. (Hint: Do	not	try	to	solve	this	problem
by	dividing	the	octagon	into	eight	congruent	triangles	with	a	common	vertex	in	the
center	of	the	octagon—that	method	is	quite	tricky.)

One	very	nice	property	of	regular	polygons	is	that	they	minimize	perimeter	among	all	polygons
with	a	given	number	of	edges	and	a	given	area. More	precisely, suppose	we	are	interested	in
polygons	with n edges, where n is	some	positive	integer	greater	than	or	equal	to	three. Suppose
further	that	we	are	given	an	area A, where A is	some	positive	number. Among	all	the n-gons
that	have	area A, which	one	has	the	smallest	perimeter? The	answer	is	the	regular n-gon	with
area A. Though	this	result	seems	reasonable	intuitively, the	demonstration	is	beyond	the	scope
of	this	text. Alternatively, if	we	are	given	a	perimeter P, we	can	ask	which n-gon	with	perimeter
P has	the	largest	area. Again, the	answer	is	the	regular n-gon	with	perimeter P.

Exercise 2.4.8.

(1) Suppose	we	have	a	circle, and	suppose	thatA and B are	points	on	the	circle	that	are
not	diametrically	opposite	each	other. Suppose	further	thatC is	another	point	on	the
circle	that	is	between A and B. Consider	the	area	of	the	triangle △ABC. Explain
why	of	all	possible	choices	of	pointsC, the	one	where△ABC has	the	maximal	area
is	where C is	midway	between A and B.

(2) Give	an	informal	explanation	that, among	all	polygons	with n vertices, and	with	its
vertices	all	on	a	given	circle, the	regular n-gon	will	have	the	maximal	area.

We	can	also	use	regular	polygons	to	help	give	us	an	intuitive	(though	not	rigorous)	explanation
regarding	some	aspects	of	the	number π. Of	course, the	number π relates	to	circles. However,
we	can	use	regular	polygons	to	help	us	understand	circles	because, as	we	mentioned	above, if
we	start	with	a	circle, we	can	form	a	regular n-gon	with	vertices	on	the	circle, for	any	positive
integer n greater	than	or	equal	to	three. If	we	choose	the	number n to	be	very	large, then	the
n-gon	approximates	the	circle	very	closely. The	larger	the n, the	better	the	approximation. No
polygon	ever	equals	the	circle, though	for	very	large n it	might	be	impossible	to	distinguish	a
regular n-gon	from	a	circle	with	the	naked	eye.
To	discuss	the	number π, recall	that	it	is	usually	defined	as	the	ratio	of	the	circumference	to

the	diameter	of	a	circle. That	is	correct, but	there	is	an	aspect	to	this	definition	that	is	usually
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glossed	over—how	do	we	know	that	in	all	circles, there	is	the	same	ratio	of	the	circumference
to	the	diameter. If	this	ratio	were	different	in	different	circles, then	the	definition	of π would	not
make	any	sense. In	fact, this	ratio	is	the	same	in	all	circles, as	can	be	proved. A rigorous	proof
can	be	found	using	calculus, but	we	can	use	triangles	to	give	us	an	intuitive	idea	why	this	ratio	is
the	same	in	all	circles. Before	we	start, we	note	that	instead	of	the	ratio	of	the	circumference	to
the	diameter, we	can	just	as	well	look	at	the	ratio	of	the	circumference	to	the	radius	of	the	circle,
which	should	yield 2π rather	than π. If	we	can	show	that	the	the	ratio	of	the	circumference	to
the	radius	is	the	same	for	any	two	different	circles, that	will	suffice.
Suppose	we	have	are	given	 two	circles	of	different	 sizes. In	each	circle, construct	a	 regu-

lar n-gon	with	its	vertices	on	the	circle. One	such	circle	and	regular n-gon	is	shown	in	Fig-
ure 2.4.9 (i); in	the	figure	we	have	a 10-gon, though	it	would	be	possible	to	have	any	number	of
edges. In	each	of	the	polygons, draw	line	segments	from	the	center	of	the	circle	to	the	vertices
of	the	polygon, thus	breaking	the	polygon	up	into n isosceles	triangles. In	Figure 2.4.9 (ii)	we
see	the	smaller	of	our	two	circles; the	length	of	each	edge	of	the	polygon	is a, and	the	radius	of
the	circle	is r. In	Figure 2.4.9 (iii)	we	see	the	larger	of	our	two	circles; the	length	of	each	edge
of	the	polygon	is c, and	the	radius	of	the	circle	is s.

(i)                                         (ii)                                           (iii)

a
c

r s

Figure	2.4.9

Now, compare	the	two	polygons	in	the	different	sized	circles. They	are	both	regular n-gons,
even	though	they	are	of	different	sizes. Hence, by	Proposition 2.3.4 (1), both	of	these n-gons
have	the	same	interior	angles. The	base	angles	in	the	isosceles	triangles	into	which	the	polygons
are	broken	up	are	therefore	also	the	same	in	both	polygons. It	follows	that	the	isosceles	triangles
in	the	smaller	polygon	are	all	similar	to	the	isosceles	triangles	in	the	larger	polygon. In	particular,
by	using	Proposition 2.2.9, we	see	that

a

r
=

c

s
.

Multiplying	each	side	by n yields
na

r
=

nc

s
.
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We	observe	that	the	perimeter	of	the	smaller	polygon	is na, and	the	perimeter	of	the	larger
polygon	is nc. Hence

Perimeter	of	the	smaller	polygon

Radius	of	the	smaller	circle
=

Perimeter	of	the	larger	polygon

Radius	of	the	larger	circle
.

If n is	very	large, then	the	perimeter	of	the	polygons	is	very	close	to	the	circumference	of	the
circle.By	letting n go	to	infinity, we	deduce	that

Circumference	of	the	smaller	circle

Radius	of	the	smaller	circle
=

Circumference	of	the	larger	circle

Radius	of	the	larger	circle
,

which	is	what	we	were	trying	to	show. This	argument	is	not	completely	rigorous	as	stated, but
it	does	give	a	plausible	argument.
We	can	take	the	above	sort	of	reasoning	one	step	further. Suppose	that	a	circle	has	radius r.

As	we	just	discussed, we	have C = 2πr, where C is	the	circumference	of	the	circle. There	is, of
course, another	equally	useful	formula	involving π, namelyA = πr2, whereA is	the	area	of	the
circle. We	cannot	take	this	area	formula	as	the	definition	of π, because	we	have	already	defined
π in	 terms	of	 the	circumference. Rather, we	can	give	an	intuitive	argument	 for	 this	 formula,
given	that	we	have	already	seen	why C = 2πr ought	to	be	true. (Again, our	argument	will	not
be	completely	rigorous, though	a	rigorous	argument	can	be	found	using	calculus.)
Suppose	we	have	a	circle	of	radius r. Again, form	a	regular n-gon	with	vertices	on	the	circle.

This	time, make	sure	that n is	an	even	number. We	form	isosceles	triangles	as	before; this	time,
we	color	every	other	triangle. See	Figure 2.4.10 (i)	for	the	case	where n is	ten. Observe	that	the
area	of	the n-gon	is	very	close	to	the	area	of	the	circle; if n is	very	large, then	the	approximation
is	quite	close.

(i)                                                               (ii)

Figure	2.4.10

Now, we	take	the n-gon, and	we	rearrange	its	triangles	as	shown	in	Figure 2.4.10 (ii). The
shape	that	these	rearranged	triangles	form	is	a	parallelogram. However, if n is	very	large, the
triangles	will	be	very	thin, and	the	parallelogram	will	be	almost	a	rectangle. What	is	the	length
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of	the	altitude	of	the	parallelogram? If n is	very	large, then	the	triangles	will	be	extremely	thin,
and	the	altitude	of	each	triangle	will	be	approximately	the	same	as	the	length	of	its	sides, which
is	just	the	radius	of	the	circle, namely r. What	is	the	length	of	the	base	of	the	parallelogram? It
is	half	the	circumference	of	the	circle, namely πr. Hence, using	Proposition 2.4.1 (1), we	see
that	the	area	of	the	parallelogram	is	approximately πr · r = πr2. If n gets	larger	and	larger, the
approximation	gets	better	and	better. Note, however, that	the	area	of	the	parallelogram	is	very
close	to	the	area	of	the	circle, because	it	is	the	same	as	the	area	of	the	polygon	inside	the	circle.
Once	again, as n goes	to	infinity, we	deduce	that	area	of	the	circle	is	actually	equal	to	the	area
of	the	parallelogram, and	hence	the	area	of	the	circle	is πr2. Once	again, this	argument	is	not
completely	rigorous	as	stated, but	gives	an	intuitive	picture	of	what	is	happening.
We	end	 this	section	by	using	 the	concept	of	area	 to	demonstrate	a	 result	 that	on	 the	 face

of	it	has	little	to	do	with	area, namely	Proposition 2.2.9, which	concerns	similar	triangles. To
demonstrate	this	proposition, we	need	two	preliminary	results, to	which	we	now	turn; it	is	in
the	demonstration	of	the	first	of	these	results	that	we	encounter	the	use	of	area. Our	approach
here	 follows	 [Mey99, Section	2.4]. To	 read	 the	 statement	of	our	first	preliminary	 result, see
Figure 2.4.11.

A

B

D E

C

Figure	2.4.11

Proposition 2.4.3. Suppose	that	a	triangle △ABC has	a	point D on	edge AB, and	a	point E
on	edge AC, placed	so	that DE is	parallel	to BC. Then

|AB|

|AD|
=

|AC|

|AE|
.

Demonstration. As	a	first	step, we	add	the	line	segmentBE, as	shown	in	Figure 2.4.11 (i). Next,
draw	an	altitude	from E to AB; suppose	this	altitude	has	length h, as	indicated	in	the	figure.
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A

B

D E

C

A

B

D E

C

h

(i)                                                                       (ii)

Figure	2.4.12

Consider	the	triangle △ABE. Using	Proposition 2.4.1 (3), we	know	that	the	area	of	this	tri-

angle	is
1

2
|AB|h. Similarly, the	area	of	the	triangle △ADE is

1

2
|AD|h. It	then	follows	that

area	of △ABE

area	of △ADE
=

1
2
|AB|h

1
2
|AD|h

=
|AB|

|AD|
.

Next, return	to	the	original	situation	in	Figure 2.4.11, and	add	the	line	segmentDC, as	shown
in	Figure 2.4.11 (ii). The	same	sort	of	reasoning	as	before	shows	that

area	of △ACD

area	of △ADE
=

|AC|

|AE|
;

we	leave	the	details	to	the	reader.
As	our	next	step, we	compare	the	two	triangles △DEB and △DEC shown	in	the	two	parts

of	Figure 2.4.11. We	can	think	of DE as	the	base	of	both	triangles. Moreover, because DE is
parallel	to BC (by	hypothesis), it	follows	that	the	altitude	of △DEB perpendicular	to DE has
the	same	length	as	the	altitude	of△DEC perpendicular	toDE (this	fact	uses	Proposition 2.2.6).
It	then	follows	by	Proposition 2.4.2 (2)	that △DEB and △DEC have	the	same	area.
Finally, given	that	triangles △DEB and △DEC have	the	same	areas, we	see	that	triangles

△ABE and △ACD have	the	same	areas. Plugging	this	observations	into	the	two	formulas	for
the	ratios	of	areas	that	we	previously	saw, we	see

|AB|

|AD|
=

area	of △ABE

area	of △ADE
=

area	of △ACD

area	of △ADE
=

|AC|

|AE|
.

Thus	we	have	shown	the	desired	equation.
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Our	 second	preliminary	 result	 is	 the	converse	 to	 the	previous	proposition; again, see	Fig-
ure 2.4.11.

Proposition 2.4.4. Suppose	that	a	triangle △ABC has	a	point D on	edge AB, and	a	point E
on	edge AC, placed	so	that

|AB|

|AD|
=

|AC|

|AE|
.

Then DE is	parallel	to BC.

Demonstration. We	see	the	given	situation	in	Figure 2.4.13 (i); we	do	not	know	yet	whether
DE is	parallel	to BC or	not	(because	that	is	what	we	are	trying	to	show), and	we	have	drawn
the	case	where	the	two	line	segments	are	not	parallel.

A

B

D
E

C

A

B

D F
E

C

(i)                                                                (ii)

Figure	2.4.13

By	using	Playfair’s	Axiom (Proposition 1.1.1), we	can	draw	a	line	containingD that	is	parallel
to	the	line	containing BC. This	line	throughD intersects AC in	a	point, which	we	will	call F.
Then DF is	parallel	to BC. See	Figure 2.4.13 (ii).
We	can	now	apply	Proposition 2.4.3 to	the	triangle △ABC with	the	points D and F. We

deduce	that
|AB|

|AD|
=

|AC|

|AF|
.

On	the	other	hand, we	know	by	our	hypotheses	that

|AB|

|AD|
=

|AC|

|AE|
.
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We	combine	these	two	equations	to	derive

|AC|

|AF|
=

|AC|

|AE|
,

and	by	cancelling	and	rearranging	it	follows	that |AF| = |AE|. Given	that E and F are	both
points	in AC, we	see	that E = F. By	construction	we	know	thatDF is	parallel	to BC, and	we
deduce	that DE is	parallel	to BC.

We	now	have	all	the	ingredients	needed	for	the	promised	demonstration	of	Proposition 2.2.9.

Demonstration	of	Proposition 2.2.9. Suppose	that	triangles△ABC and△A ′B ′C ′ are	similar.
We	will	first	show	that

|AB|

|AB ′|
=

|AC|

|AC ′|
.

First, we	note	 that	 either |AB| = |AB ′| or |AB| ̸= |AB ′|. If	 it	happens	 to	be	 the	case
that |AB| = |AB ′|, then	we	can	deduce	that △ABC and △A ′B ′C ′ are	congruent, using	the
Angle-Side-Angle	Theorem	(Proposition 2.2.4). In	that	case, it	would	follow	that |AC| = |AC ′|,
and	then	we	would	see	that

|AB|

|AB ′|
= 1 =

|AC|

|AC ′|
,

which	is	what	we	are	trying	to	show.
Now	assume	that |AB| ̸= |AB ′|, because	 that	 is	 the	remaining	case. There	are	now	two

possibilities, namely |AB| > |AB ′| or |AB| < |AB ′|; we	will	discuss	only	the	first	of	these
two	cases, the	other	case	being	virtually	identical. So, assume	that |AB| > |AB ′|.
Because |AB| > |AB ′|, we	can	find	a	point D on AB so	that |AD| = |AB ′|. See	Fig-

ure 2.4.14. Now	find	a	point E on AC so	that

|AB|

|AD|
=

|AC|

|AE|
;

Such	a	point	can	always	be	found. Again, see	Figure 2.4.14.

We	can	now	apply	Proposition 2.4.4 to	the	triangle△ABC with	pointsD and E. The	propo-
sition	implies	that DE is	parallel	 to BC. We	can	now	use	Proposition 1.2.3 to	deduce	that
the	angle α equals	the	angle	at B. By	hypothesis	the	triangles △ABC and △A ′B ′C ′ are	sim-
ilar, and	hence	the	angle	at B equals	 the	angle	at B ′. It	 follows	that	 the	angle α equals	 the
angle	at B ′. We	also	know	that	the	angle	at A equals	the	angle	at A ′. Given	that	we	also	have
|AD| = |AB ′| (which	is	true	by	virtue	of	our	choice	of D), we	see	that	triangles △ADE and
△A ′B ′C ′ are	congruent	by	the	Angle-Side-Angle	Theorem	(Proposition 2.2.4). We	derive	that
|AE| = |AC ′|. Finally, we	know	by	construction	that

|AB|

|AD|
=

|AC|

|AE|
.
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Figure	2.4.14

It	follows	that
|AB|

|AB ′|
=

|AC|

|AC ′|
.

This	last	equation	is	the	one	we	were	supposed	to	demonstrate.
We	note	that	a	completely	similar	argument	could	be	used	to	show	that

|AC|

|AC ′|
=

|BC|

|B ′C ′|
;

we	will	skip	the	details. We	have	therefore	shown	that

|AB|

|AB ′|
=

|AC|

|AC ′|
=

|BC|

|B ′ C ′|
,

which	is	the	first	displayed	equation	in	the	statement	of	Proposition 2.2.9. The	second	displayed
equation	in	the	statement	of	Proposition 2.2.9 follows	straightforwardly	from	the	first	displayed
equation, and	we	will	leave	that	to	the	reader. Hence	our	demonstration	is	complete.

2.5 The	Pythagorean	Theorem

This	 section	 treats	 what	 is	 probably	 the	most	 famous	 theorem	 about	 triangles, namely	 the
Pythagorean	Theorem. (This	 theorem	 seems	 to	have	been	known	empirically	 in	both	Baby-
lon	and	China	before	the	time	of	Pythagoras, though	there	is	no	evidence	that	the	theorem	was
proved	prior	to	Pythagoras.) There	are	many	other	equally	important	theorems	in	geometry	other
than	the	Pythagorean	Theorem, but	we	focus	on	it	now	because	it	is	so	familiar, and	because	it
brings	together	a	number	of	ideas	we	have	encountered	so	far	about	triangle	and	polygons.
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It	is	important	to	state	the	Pythagorean	Theorem	correctly. Whenever	I ask	students	in	a	class
to	state	the	Pythagorean	Theorem, the	response	I invariably	receive	is: “a2+b2 = c2.” However,
just	to	state	this	equation	is	absolutely	not	correct. It	is	not	true	that	this	equation	holds	for any
numbers a, b and c. The	equation	holds	only	for	particular	values	of a, b and c, namely	those
that	correspond	to	the	lengths	of	the	sides	and	hypotenuse	of	a	right	triangle. (Recall	that	in	a
right	triangle, the	two	edges	that	form	the	right	angle	are	called	the sides of	the	triangle, and	the
edge	that	is	opposite	the	right	angle	is	called	the hypotenuse of	the	triangle.)
We	are	now	ready	to	state	and	demonstrate	the	Pythagorean	Theorem. There	are	many	proofs

of	this	theorem, going	back	to	the	ancient	world. For	Euclid’s	proof	see	Proposition 47	of	Book
I of	[Euc56], though	you	have	to	look	at	some	of	Euclid’s	previous	propositions	to	figure	out
all	 the	details	of	his	proof	of	 the	Pythagorean	Theorem. We	give	 two	different	proofs	of	 the
theorem	(both	quite	different	from	Euclid’s	proof), to	show	how	the	same	result	can	be	proved	by
different	approaches. Our	first	proof	(a	very	widely	used	one)	is	based	on	area	and	congruence
of	 triangles; the	second	is	based	on	similarity	of	 triangles. Neither	of	our	proofs	would	have
made	sense	to	the	ancient	Greeks	(who	did	not	have	our	algebra). See	[Loo40]	for	a	variety	of
proofs	of	the	Pythagorean	Theorem. A curious	factoid	is	that	there	is	a	proof	of	the	Pythagorean
Theorem	attributed	to	President	James	Garfield—perhaps	the	only	known	mathematical	proof
attributed	to	a	president	of	the	United	States.

Proposition 2.5.1 (Pythagorean	Theorem). Suppose	that	a	right	triangle	has	sides	of	length a

and b, and	hypotenuse	of	length c. Then a2 + b2 = c2.

Demonstration. First	Proof: In	Figure 2.5.1 (i)	we	see	the	triangle	under	consideration. Given
that	the	sum	of	the	three	angles	in	the	triangle	is 180◦ (as	we	saw	in	Proposition 2.2.1 (1)), we
know	that α+ β = 90◦.
We	now	construct	a	 square	with	sides	of	 length a + b, and	break	 it	up	as	shown	 in	Fig-

ure 2.5.1 (ii). We	see	four	copies	of	the	original	right	triangle	inside	the	larger	square. That	these
four	triangles	are	really	congruent	to	the	original	triangle	is	intuitively	clear, and	formally	follows
from	the	Side-Angle-Side	Theorem	(Proposition 2.2.3).

Now	consider	the	angle γ, as	indicated	in	the	figure. Given	that α, β and γ together	make
up	a	straight	line, we	know	that α + β + γ = 180◦. Because α + β = 90◦, as	previously
mentioned, we	deduce	that γ = 90◦. A similar	argument	shows	that	 the	other	 three	angles
between	the	sides	of	length c are	also 90◦. It	follows	that	the	figure	that	has	four	edges	of	length
c is	in	fact	a	square.
We	know	that	the	entire	square	with	sides	of	length a + b has	area (a + b)2. On	the	other

hand, we	can	also	compute	 the	area	of	 the	entire	square	by	adding	up	the	areas	of	 the	five
pieces	(one	square	and	four	triangles)	into	which	we	have	broken	it	up. The	square	with	sides
of	length c has	area c2. Each	of	the	four	copies	of	the	original	triangle	has	area 1

2
ab. The	total

area	is	therefore c2 + 4 · 1
2
ab = c2 + 2ab. Equating	the	two	ways	of	computing	the	total	area,

obtain

(a+ b)2 = c2 + 2ab.
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Figure	2.5.1

Recall	from	algebra	the	formula (a+ b)2 = a2 + 2ab+ b2. We	then	obtain

a2 + 2ab+ b2 = c2 + 2ab.

Canceling 2ab from	each	side	of	this	last	equation	yields a2 + b2 = c2, which	is	what	we
wanted	to	prove.

Second	Proof: In	Figure 2.5.2 (i)	we	see	the	triangle	under	consideration, where	the	angle	be-
tween	 the	 sides	of	 lengths a and b is	 a	 right	 angle. In	 Figure 2.5.2 (ii)	we	have	drawn	 the
altitude	perpendicular	to	edge AB. Let D be	the	point	where	the	altitude	intersects AB. In
triangle△ABC, let a, b and c respectively	denote	the	lengths	of	the	edges	opposite	angles A,
B and C. Let x denote	the	length	of AD, and	thus	the	length	of BD is c− x.

Consider	the	two	triangles△ABC and△DBC. Each	triangle	has	a	right	angle, and	each	has
the	angle	at B, so	they	have	two	equal	angles. Because	the	sum	of	the	angles	in	each	triangle
is 180◦, the	 two	 triangles	 in	 fact	have	all	 three	angles	 the	 same. Thus	 the	 two	 triangles	are
similar, where	vertices A, B and C respectively	in △ABC correspond	to	vertices C, B and D

in △DBC. It	now	follows	from	Proposition 2.2.9 that

c

a
=

a

c− x
.

It	can	also	be	seen	that	the	two	triangles △ABC and △ADC are	similar, where	vertices A, B
and C respectively	in △ABC correspond	to	vertices A, C and D in △ADC. It	follows	from
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(i)                                                                             (ii)           
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Proposition 2.2.9 that
c

b
=

b

x
.

If	we	cross	multiply	the	above	two	equations, we	obtain

c(c− x) = a2 and cx = b2.

Multiplying	out	the	first	equation, we	obtain

c2 − cx = a2 and cx = b2.

Substituting	the	second	equation	into	the	first, we	obtain

c2 − b2 = a2.

Moving b2 to	the	other	side	yields a2 + b2 = c2, which	is	what	we	wanted	to	prove.

Exercise 2.5.1. The	two	sides	of	a	right	triangle	are 6 and 11 inches	respectively. How	long
is	the	hypotenuse?

Exercise 2.5.2. A 40 ft.	wire	is	stretched	from	the	top	of	a	pole	to	the	ground. The	wire
reaches	the	ground 25 ft.	from	the	base	of	the	pole. How	high	is	the	pole?

Exercise 2.5.3. Prove	the	Pythagorean	Theorem	using	Figure 2.5.3 instead	of	Figure 2.5.1.
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The	Pythagorean	Theorem	states	that	if	a	right	triangle	has	sides	of	length a and b, and	hy-
potenuse	of	length c, then a2+b2 = c2. Could	it	happen	that	in	a	non-right	triangle	with	edges
of	length a, b and c, the	formula a2 + b2 = c2 also	holds? The	following	proposition	says	that
it	could	not	happen; in	other	words, the	formula a2+b2 = c2 is	the	exclusive	province	of	right
triangles. It	is	interesting	to	note	that	we	will	use	the	Pythagorean	Theorem	to	demonstrate	the
fact	the	theorem	does	not	hold	in	non-right	triangles.

Proposition 2.5.2 (Converse	 to	 the	 Pythagorean	Theorem). Suppose	we	are	given	a	 triangle
△ABC. Let a, b and c respectively	denote	the	lengths	of	the	edges	opposite	angles A, B and
C. Suppose	that a2 + b2 = c2. Then C is	a	right	angle.

Demonstration. We	follow	[Bar01, p.	10]. The	angle C could	be	either	acute	(less	than 90◦),
obtuse	(greater	than 90◦)	or	a	right	angle	(equal	to 90◦). We	will	prove	that	the	first	two	cases
cannot	happen; it	will	then	follow	that C is	a	right	angle, which	is	what	we	are	trying	to	prove.
Suppose	first	that C is	less	than 90◦. See	Figure 2.5.4 (i). In	Figure 2.5.4 (ii)	we	have	drawn	the

altitude	perpendicular	to	edge BC. LetD be	the	point	where	the	altitude	intersects BC. Let h
denote	the	length	of AD, and	let x denote	the	lenth	of CD. We	see	that	the	length	of BD is
a − x. Observe	that	because C is	less	than 90◦, it	follows	that x > 0. (If C were	a	right	angle,
then D would	be	the	same	as C, and x would	be 0.)

The	two	triangles△ADC and△ABD are	right	triangles. Applying	the	Pythagorean	Theorem
to	each	one, we	obtain	the	two	equations

x2 + h2 = b2 and (a− x)2 + h2 = c2.

Isolating h2 in	each	of	these	equations	yields

h2 = b2 − x2 and h2 = c2 − (a− x)2.
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Equating	these	two	expressions	for h2 gives	us

b2 − x2 = c2 − (a− x)2.

Recall	from	algebra	the	formula (a− x)2 = a2 − 2ax+ x2. We	therefore	obtain

b2 − x2 = c2 − (a2 − 2ax+ x2).

Distributing	the	negative	sign	in	yields

b2 − x2 = c2 − a2 + 2ax− x2.

Cancelling x2 from	both	sides	give	us

b2 = c2 − a2 + 2ax.

Finally, bring	the a2 to	the	other	side, and	we	deduce	that

a2 + b2 = c2 + 2ax.

We	now	have	a	logical	impossibility. On	the	one	hand, we	have	assumed	that a2 + b2 = c2.
On	the	other	hand, we	just	deduced	that a2 + b2 = c2 + 2ax. Given	that	neither a nor x is 0,
then	neither	is 2ax, and	so	we	have	an	impossible	situation. The	only	way	out	of	this	problem
is	to	admit	that	our	hypothesis	that C is	less	than 90◦ is	false.
A similar	argument	shows	that	the	hypothesis	thatC is	greater	than 90◦ is	also	false. (We	leave

it	to	the	reader	to	supply	the	details; the	difference	is	that	Figure 2.5.4 needs	to	be	modified	so
thatC is	greater	than 90◦, which	makes	the	altitude	perpendicular	to BC be	outside	the	triangle
△ABC.) As	a	result, the	only	remaining	possibility	is	that C is	a	right	angle, which	is	what	we
wanted	to	show.

The	Pythagorean	Theorem	definitely	does	not	hold	for	triangles	that	are	not	right	triangles.
We	now	turn	to	two	generalizations	of	the	Pythagorean	Theorem	that	do	hold	for	all	triangles.
The	first	of	these	generalizations, the	more	well	known	and	useful	of	the	two, is	called	the	Law
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of	Cosines, and	it	is	essentially	the	Pythagorean	Theorem	with	a	correction	factor	that	makes	it
work	for	all	triangles. The	Law	of	Cosines	is	important	in	trigonometry, and	shows	up	in	other
branches	of	mathematics, and	applications	of	mathematics. To	state	the	Law	of	Cosines, we	need
to	use	the	trigonometric	function	cosine. For	those	not	familiar	with	cosine, you	can	simply	skip
the	statement	of	the	Law	of	Cosines	given	below; we	will	not	be	using	this	law	at	any	point	in
this	text. However, we	mention	it, to	show	one	of	the	ways	in	which	the	Pythagorean	Theorem
can	be	generalized	to	non-right	triangles.
Just	to	remind	those	familiar	with	the	trigonometric	functions, cosine	is	a	function	that	assigns

to	every	angle x a	number	denoted cos x. For	example, we	have cos 0◦ = 1, and cos 60◦ = 1/2,
and cos 90◦ = 0. The	Law	of	Cosines	is	as	follows.

Proposition 2.5.3 (Law	of	Cosines). Suppose	we	are	given	a	triangle △ABC. Let a, b and c

respectively	denote	the	lengths	of	the	edges	opposite	angles A, B and C. Then

c2 = a2 + b2 − 2ab cosC.

For	a	proof	of	the	Law	of	Cosines, see	most	books	on	trigonometry	for	details. We	chose	to
highlight	the	angleC in	the	above	statement	of	the	Law	of	Cosines, though	in	a	non-right	triangle
no	one	angle	is	special, and	the	Law	of	Cosines	also	states	that a2 = b2 + c2 − 2bc cosA and
b2 = a2 + c2 − 2ac cosB. Next, suppose	that △ABC is	in	fact	a	right	triangle, with C the
right	angle. Then C = 90◦, and cosC = 0. In	that	case, the	Law	of	Cosines	just	reduces	to	the
Pythagorean	Theorem.
We	now	turn	to	our	second, less	well	known, generalization	of	 the	Pythagorean	Theorem.

This	generalization	is	known	as	Pappus’	Variation	on	the	Pythagorean	Theorem In	the	Law	of
Cosines, we	maintain	the a2, b2 and c2 that	are	in	the	statement	of	the	Pythagorean	Theorem,
but	put	in	an	extra	correction	term	(involving	trigonometry)	to	account	for	non-right	triangles.
Recall	that	geometrically, the	terms a2, b2 and c2 correspond	to	the	areas	of	certain	squares.
In	Pappus’	Variation	on	the	Pythagorean	Theorem, stated	below, we	replace	squares	by	certain
parallelograms, and	by	so	doing	we	will	be	able	to	allow	for	non-right	 triangles	without	 the
use	of	a	correction	term	(and	thus	without	any	trigonometry). When	reading	the	statement	of
Pappus’	Variation	on	the	Pythagorean	Theorem, it	will	help	to	look	at	Figure 2.5.5.

Proposition 2.5.4 (Pappus’	Variation	on	the	Pythagorean	Theorem). Suppose	we	are	given	a	tri-
angle△ABC. Form	parallelogramsACDE andBCFG on	the	edgesAC andBC respectively.
Extend	the	line	segments DE and FG until	they	intersect	in	the	point H. Form	the	parallelo-
gram ABIJ with	edgesAJ and B I that	are	parallel	to	and	have	equal	length	asHC. Then	the
area	of	the	parallelogram ABIJ equals	the	sum	of	the	areas	of	the	parallelograms ACDE and
BCFG.

Demonstration. First, we	extend HC until	it	cuts	through	the	parallelogram ABIJ, breaking
it	up	into	two	smaller	parallelograms AJKL and BIKL. See	Figure 2.5.6. We	will	now	show
that	the	area	of	parallelogramACDE equals	the	area	of	the	parallelogramAJKL. A completely
identical	argument	 (the	details	of	which	we	will	 skip)	can	be	used	 to	 show	 that	 the	area	of
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parallelogram BCFG equals	the	area	of	the	parallelogram BIKL. It	will	then	follow	that	the
sum	of	the	areas	of	the	parallelograms ACDE and BCFG equals	the	sum	of	the	areas	of	the
parallelogramsAJKL and BIKL, which	in	turn	equals	the	area	of	the	parallelogramABIJ, thus
completing	the	argument.

B

G

F
H

J
K

I

C

A L

E

D

Figure	2.5.6

To	show	that	the	area	of	parallelogram ACDE equals	the	area	of	the	parallelogram AJKL,
we	need	to	make	one	more	parallelogram. ExtendAJ until	it	intersects	the	line	containingDE
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in	pointM. We	see	thatMA is	parallel	toHC. See	Figure 2.5.7. HenceACHM is	a	parallel-
ogram. Compare	the	parallelograms ACDE and ACHM. They	both	have	the	edge AC, and
then	both	have	the	same	altitude	perpendicular	to	this	edge. It	follows	from	Proposition 2.4.2 (1)
that	these	two	parallelograms	have	the	same	area.
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Figure	2.5.7

Next, compare	the	parallelogramsACHM andAJKL. Observe	that	the	edgeHC of	the	par-
allelogram ACHM is	equal	in	length	and	parallel	to	the	edge AJ of	the	parallelogram AJKL.
Moreover, the	altitudes	perpendicular	 to	 these	 two	edges	are	equal. It	 follows	 from	Proposi-
tion 2.4.2 (1)	that	these	two	parallelograms	have	the	same	area. Hence, because	the	parallelo-
grams ACDE and ACHM have	the	same	areas, and	the	parallelograms ACHM and AJKL

have	the	same	areas, it	follows	that	the	parallelograms ACDE and AJKL, which	is	what	we
needed	to	show.

When	 we	 apply	 Pappus’	Variation	 on	 the	 Pythagorean	Theorem	 to	 a	 right	 triangle, and
we	 choose	 parallelograms	 that	 happen	 to	 be	 squares, then	 we	 simply	 obtain	 the	 standard
Pythagorean	Theorem.
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3
Polyhedra

3.1 Polyhedra	–	The	Basics

A polyhedron is	a	solid	region	of	space	that	is	bounded	by	a	finite	number	of	polygons	that
are	glued	together. We	have	three	requirements	about	the	way	in	which	we	glue	the	polygons
together.

(1) Polygons	are	glued	edge-to-edge	(that	is, entire	edges	are	glued	to	entire	edges), or	vertex-
to-vertex.

(2) Every	edge	of	a	polygon	is	glued	to	precisely	one	other	edge.

(3) No	two	polygons	intersect	except	possibly	along	their	edges	where	they	are	glued.

Some	polyhedra	are	shown	in	Figure 3.1.1. Some	non-polyhedra	are	shown	in	Figure 3.1.2;
the	object	in	Part (i)	has	polygons	that	are	not	glued	edge-to-edge, and	the	object	in	Part (ii)	has
three	edges	of	polygons	glued	together. Note	that	the	plural	of	“polyhedron”	is	“polyhedra.”
We	will	restrict	our	attention	to	polyhedra	made	up	out	of	convex	polygons, though	it	is	also
possible	to	consider	polyhedra	with	non-convex	faces. (It	is	also	possible	to	look	at	polyhedra
with	self-intersections, that	is, in	which	requirement	(3)	is	dropped; we	will	not	be	looking	at
such	polyhedra	in	this	text, with	one	brief	exception	at	the	end	of	Section 3.6.)

For	each	polyhedron, the faces of	the	polyhedron	are	the	polygons	that	bound	it; the edges
are	the	line	segments	where	the	faces	meet; the vertices are	the	points	where	edges	meet. For
example, the	cube shown	in	Figure 3.1.1 has	six	square	faces, twelve	edges	and	eight	vertices.
The	following	simple	facts	about	faces, edges	and	vertices	of	polyhedra, which	will	be	of	use

later	on, can	be	derived	from	our	requirements	on	how	polygons	are	glued	together	to	make
polyhedra.
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(i)                                         (ii)                                           (iii)

Figure	3.1.1

(i)                                                        (ii)      

Figure	3.1.2

Proposition 3.1.1.

1. Every	edge	in	a	polyhedron	is	contained	in	precisely 2 faces.

2. Every	vertex	in	a	polyhedron	is	contained	in	at	least 3 edges.

3. Every	face	in	a	polyhedron	contains	at	least 3 edges.

Just	 as	we	 had	 both	 convex and	 non-convex	 polygons, so	 too	we	 can	 have	 convex	 and
non-convex	polyhedra. The	idea	of	convexity	is	completely	the	same	for	polyhedra	as	for	poly-
gons. Intuitively, a	polyhedron	is	convex	if	it	has	no	“indentations.” More	formally, a	polyhedron
is	convex	if	any	two	points	in	the	polyhedron	are	joined	by	a	line	segment	contained	entirely	in
the	polyhedron. The	polyhedra	in	Figure 3.1.1 (i)	and	(ii)	are	convex, whereas	the	polyhedron	in
Part (iii)	of	the	figure	is	not. We	will	mostly, though	not	exclusively, deal	with	convex	polyhedra
in	this	text. One	useful	fact	about	convex	polyhedron, which	we	state	without	demonstration,
is	the	following.

Proposition 3.1.2. At	any	vertex	of	a	convex	polyhedron, the	sum	of	the	angles	at	the	vertex
add	up	to	less	than 360◦.
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Though	some	polyhedra	are	quite	irregular, there	are	some	nice	categories	of	polyhedra	that
are	convenient	to	work	with. A pyramid is	obtained	by	taking	a	polygon	in	the	plane, taking
a	point	“above”	 the	polygon, and	 joining	 this	point	 to	 the	vertices	of	 the	polygon. The	new
vertex	is	often	called	the cone	point of	the	pyramid	(it	is	also	known	as	the apex of	the	pyramid);
the	polygon	that	we	started	with	is	called	the base of	the	pyramid, and	we	often	call	such	a
pyramid	as	a	“pyramid	over	the	polygon.” The	famous	pyramids	in	Giza, Egypt, are	examples
of	pyramids	with	square	bases	(often	called	“square	pyramids,” or	“pyramids	over	squares”);
observe	that	the	mathematical	use	of	the	term	pyramid	allows	for	pyramids	with	any	base, not
just	a	square	base. See	Figure 3.1.3 (i)	for	a	pyramid	over	a	pentagon. A bipyramid is	obtained
by	taking	a	polygon	in	the	plane, taking	one	point	“above”	the	polygon	and	one	point	“below”
it, and	joining	both	point	to	the	vertices	of	the	polygon; the	new	vertices	are	both	called cone
points of	the	bipyramid	(one	is	the	“top”	cone	point, and	one	is	the	“bottom”	cone	point). See
Figure 3.1.3 (ii)	for	a	bipyramid	over	a	pentagon. A prism is	obtained	by	taking	a	polygon	in
the	plane, placing	an	identical	copy	of	the	polygon	directly	above	the	first, and	joining	pairs	of
corresponding	vertices	of	the	two	copies	of	the	polygon. See	Figure 3.1.3 (iii)	for	a	prism	over
a	pentagon. An antiprism is	obtained	by	taking	a	regular	polygon	in	the	plane, placing	a	copy
of	the	regular	polygon	above	the	first, but	rotated	so	that	each	vertex	of	the	upper	polygon	is
above	the	middle	of	an	edge	of	the	lower	polygon, and	then	joining	each	upper	vertex	to	the
two	lower	vertices	closest	to	it. See	Figure 3.1.3 (iv)	for	an	antiprism	over	a	pentagon.

(i)                                                        (ii)      

(iii)                                                      (iv)      

Figure	3.1.3

The	above	categories	of	polyhedra	can	overlap. For	example, as	 the	reader	can	verify, the
bipyramid	over	a	square, called	an	octahedron, is	in	fact	also	an	antiprism	over	a	triangle.
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Exercise 3.1.1. For	each	of	the	following	questions, if	the	answer	is	yes, give	an	example,
and	if	the	answer	is	no, explain	why	not. (To	explain	why	a	polyhedron	cannot	be	in	two
different	categories, it	does	not	suffice	simply	to	state	that	the	two	categories	are	constructed
differently, because	sometimes	two	different	constructions	can	yield	the	same	result, for
example	the	octahedron, which	is	both	a	bipyramid	and	an	antiprism.)

(1) Can	a	polyhedron	be	both	a	bipyramid	and	a	prism?

(2) Can	a	polyhedron	be	both	a	prism	and	an	antiprism?

(3) Can	a	polyhedron	be	both	a	pyramid	and	either	a	prism	or	an	antiprism?

(4) Can	a	polyhedron	be	both	a	pyramid	and	a	bipyramid? (If	you	think	that	the	answer
is	no, it	 is	not	 sufficient	 simply	 to	 say	 that	a	pyramid	has	one	cone	point, and	a
bipyramid	has	two	cone	points. Perhaps	if	you	look	at	a	certain	polyhedron	in	one
way	there	is	one	cone	point, and	viewed	another	way	there	are	two	cone	points;
perhaps	not.)

Exercise 3.1.2. Find	all	pyramids	that	have	all	regular	faces.

Just	as	there	are	formulas	for	the	areas	of	simple	types	of	polygons, there	are	also	formulas	for
the	volumes	of	simple	types	of	polyhedra. However, the	demonstrations	of	these	volume	formu-
las	are	more	complicated	than	for	area	formulas, and	so	we	will	state	the	following	proposition
without	demonstration. (See	[Har00, Sections	26-27]	for	a	technical	discussion	of	volumes.) Just
as	we	discussed	the	notion	of	the	altitude	of	a	triangle, parallelogram	or	trapezoid, we	can	simi-
larly	define	the	notion	of	an	altitude	for	polyhedra	such	as	pyramids	and	prisms; we	omit	further
details. A bipyramid	is	made	up	of	two	pyramids	glued	together, and	each	of	these	pyramids
has	an	altitude.

Proposition 3.1.3.

1. Suppose	that	a	prism	has	a	base	of	area b, and	altitude	of	length h. Then	the	volume	of
the	prism	is bh.

2. Suppose	that	a	pyramid	has	a	base	of	area b, and	altitude	of	length h. Then	the	volume
of	the	pyramid	is 1

3
bh.

3. Suppose	that	a	bipyramid	has	a	base	of	area b, and	altitudes	of	length h1 and h2 for	each
of	the	two	pyramids	in	the	bipyramid. Then	the	volume	of	the	bipyramid	is 1

3
b(h1+h2).

It	is	interesting	to	compare	the	volume	formula	for	pyramids	with	the	area	formula	for	triangles,
and	to	compare	the	volume	formula	for	prisms	with	the	area	formula	for	parallelograms.
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Given	a	convex	polyhedron, we	can	form	a	new	polyhedron, called	its dual	polyhedron, as
follows. First, for	each	face	of	the	original	polyhedron, choose	a	point	in	its	interior	(for	example,
choose	the	center	of	gravity	of	the	face). These	chosen	points	will	be	the	vertices	of	the	dual
polyhedron, called	dual	vertices. Next, consider	an	edge	in	the	original	polyhedron. This	edge
is	contained	in	precisely	two	faces	of	the	original	polyhedron. We	then	put	an	edge	in	the	dual
polyhedron	joining	the	two	dual	vertices	that	are	contained	in	these	two	faces	of	the	original
polyhedron. We	thus	obtain	the	edges	of	the	dual	polyhedron. Finally, consider	a	vertex	in	the
original	polyhedron. This	vertex	is	contained	in	some	faces	of	the	original	polyhedron. We	then
put	a	face	in	the	dual	polyhedron	that	has	as	its	vertices	the	dual	vertices	that	are	contained	in
these	faces	of	the	original	polyhedron. We	thus	obtain	the	faces	of	the	dual	polyhedron.
For	example, suppose	our	original	polyhedron	is	a	cube, as	shown	in	Figure 3.1.4 (i). The	dual

of	the	cube	is	shown	inside	the	cube	in	Figure 3.1.4 (ii). This	dual	polyhedron	has	six	vertices,
twelve	edges	and	eight	faces	(it	is	called	an	octahedron, and	we	will	encounter	it	again	in	the
next	section).

(i)                                                          (ii)      

Figure	3.1.4

Exercise 3.1.3.

(1) What	is	the	dual	to	a	bipyramid	over	an n-gon?

(2) What	is	the	dual	to	a	pyramid	over	an n-gon?

Exercise 3.1.4. Suppose P is	a	convex	polyhedron. What	is	the	relation	between P and
the	dual	of	the	dual	of P?
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3.2 Regular	Polyhedra

Just	as	regular	polygons	were	the	most	“uniform”	polygons	possible, we	want	to	find	polyhedra
that	are	as	“uniform”	as	possible. For	a	polygon	to	be	regular, it	needs	to	satisfy	two	requirement,
namely	that	all	the	edges	have	the	same	lengths, and	that	all	the	angles	are	equal	(requiring
only	edges	of	equal	length	does	not	suffice). We	will	need	similar	requirements	to	insure	that	a
polyhedron	is	completely	uniform. A convex	polyhedron	is	a regular	polyhedron if	the	following
three	conditions	hold: (1)	every	face	is	a	regular	polygon; (2)	all	faces	are	identical; and	(3)	all
vertices	are	identical, which	means	that	all	vertices	are	contained	in	the	same	number	of	faces.
It	is	not	hard	to	see	that	in	a	regular	polyhedron, all	the	edges	must	have	the	same	length.
That	the	first	two	parts	of	the	above	definition	do	not	suffice	can	be	seen	by	considering	a

bipyramid	over	an	equilateral	triangle, as	shown	in	Figure 3.2.1. If	all	the	edges	of	this	polyhe-
dron	have	equal	length, then	conditions	(1)	and	(2)	of	the	above	definition	will	be	satisfied, but
we	still	would	not	want	to	call	this	polyhedron	regular, because	the	vertices	do	not	all	“look
the	same.” More	precisely, two	of	the	vertices	are	contained	in	three	triangles	each, whereas
three	of	the	vertices	are	contained	in	four	triangles	each. Hence	we	need	condition	(3)	of	the
defintion	of	regular	polyhedra.

Figure	3.2.1

In	 the	case	of	polygons, we	saw	that	 there	were	 infinitely	many	distinct	 regular	polygons,
one	 for	each	possible	number	of	 edges. That	 is, there	 is	 a	 regular 3-gon	 (also	known	as	an
equilateral	triangle), a	regular 4-gon	(also	known	as	a	square), a	regular 5-gon, a	regular 6-gon,
etc. (Of	course, each	one	of	these	polygons	could	be	constructed	in	different	sizes, but	we	are
only	interested	in	shapes	that	are	genuinely	different.) The	following	result	shows, somewhat
surprisingly, that	what	holds	for	regular	polygons	does	not	hold	for	regular	polyhedra.

Proposition 3.2.1. Every	 regular	 polyhedron	 is	 one	 of	 the	 five	 polyhedra	 described	 in	Ta-
ble 3.2.1.

Demonstration. Recall	 that	all	 regular	polyhedra	are	assumed	to	be	convex. The	key	to	 this
demonstration	is	Proposition 3.1.2, which	says	that	at	any	vertex	of	a	convex	polyhedron, the
sum	of	the	angles	at	the	vertex	must	add	up	to	less	than 360◦.
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Name Faces Faces	per	Vertex
tetrahedron 4 triangles 3 triangles	per	vertex
cube	(aka	hexahedron) 6 squares 3 squares	per	vertex
octahedron 8 triangles 4 triangles	per	vertex
dodecahedron 12 pentagons 3 pentagons	per	vertex
icosahedron 20 triangles 5 triangles	per	vertex

Table	3.2.1

All	the	faces	in	a	regular	polyhedron	are	the	same	(and	are	regular	polygons), and	all	vertices
are	contained	in	the	same	number	of	faces. Let	us	start	by	examining	the	situation	when	all	the
faces	of	a	regular	polyhedron	are	equilateral	triangles. We	know	that	the	angles	in	an	equilateral
triangle	are	all 60◦. How	many	equilateral	triangles	can	contain	each	vertex	of	a	regular	poly-
hedron, and	still	have	the	sum	of	the	angles	at	each	vertex	add	up	to	less	than 360◦? We	observe
that 3 · 60◦ = 180◦, that 4 · 60◦ = 240◦, that 5 · 60◦ = 300◦ and	that 6 · 60◦ = 360◦. Hence,
we	see	that	it	might	be	possible	to	have	a	regular	polyhedron	with	faces	that	are	equilateral	tri-
angles, and	with	either 3, 4 or 5 faces	containing	each	vertex; it	would	not	be	possible	to	have	a
regular	polyhedron	with	faces	that	are	equilateral	triangles, and	with 6 or	more	faces	containing
each	vertex. There	indeed	exist	regular	polyhedra	with	faces	that	are	equilateral	triangles, and
with	either 3, 4 or 5 faces	containing	each	vertex, namely	the	tetrahedron, the	octahedron	and
the	icosahedron. There	exist	no	other	polyhedra	satisfying	the	same	criteria	for	the	types	of	faces
and	vertices. We	have	therefore	found	all	the	regular	polyhedra	with	faces	that	are	equilateral
triangles.
Next, let	us	examine	the	situation	when	all	the	faces	of	a	regular	polyhedron	are	squares. We

know	that	the	angles	in	a	square	are	all 90◦. How	many	squares	can	contain	each	vertex	of
a	regular	polyhedron, and	still	have	the	sum	of	the	angles	at	each	vertex	add	up	to	less	than
360◦? We	observe	that 3 · 90◦ = 270◦ and	that 4 · 90◦ = 360◦. Hence, we	see	that	it	might	be
possible	to	have	a	regular	polyhedron	with	faces	that	are	squares, and	with 3 faces	containing
each	vertex; it	would	not	be	possible	to	have	a	regular	polyhedron	with	faces	that	are	squares,
and	with 4 or	more	faces	containing	each	vertex.We	see	that	a	cube	is	a	regular	polyhedron	with
faces	that	are	squares, and	with 3 faces	containing	each	vertex; the	cube	is	unique	in	satisfying
this	property. We	have	therefore	found	all	the	regular	polyhedra	with	faces	that	are	squares.
Now, let	 us	 examine	 the	 situation	when	all	 the	 faces	of	 a	 regular	 polyhedron	are	 regular

pentagons. We	know	from	Table 2.3.1 that	the	angles	in	a	regular	pentagon	are	all 108◦. How
many	regular	pentagons	can	contain	each	vertex	of	a	regular	polyhedron, and	still	have	the	sum
of	the	angles	at	each	vertex	add	up	to	less	than 360◦? We	observe	that 3 · 108◦ = 324◦ and
that 4 · 108◦ = 432◦. Hence, we	see	that	it	might	be	possible	to	have	a	regular	polyhedron
with	faces	that	are	regular	pentagons, and	with 3 faces	containing	each	vertex; it	would	not
be	possible	to	have	a	regular	polyhedron	with	faces	that	are	regular	pentagons, and	with 4 or
more	 faces	containing	each	vertex. A dodecahedron	 is	a	 regular	polyhedron	with	 faces	 that
are	regular	pentagons, and	with 3 faces	containing	each	vertex; the	dodecahedron	is	unique	in
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satisfying	this	property. We	have	therefore	found	all	the	regular	polyhedra	with	faces	that	are
regular	pentagons.
Finally, let	us	examine	the	situation	when	all	the	faces	of	a	regular	polyhedron	are	regular

polygons	with 6 or	more	edges. We	know	from	Table 2.3.1 that	the	angles	in	a	regular	hexagon
are	all 120◦, and	that	the	angles	in	a	regular	polygon	with	more	than 6 edges	are	larger	than
120◦. How	many	regular	polygons	with 6 or	more	sides	can	contain	each	vertex	of	a	regular
polyhedron, and	still	have	the	sum	of	the	angles	at	each	vertex	add	up	to	less	than 360◦? The
answer	is	none, given	that 3 · 120◦ = 360◦, and 3 times	an	angle	larger	than 120◦ would	be
more	than 360◦. Given	that	every	vertex	in	a	polyhedron	must	be	contained	in	at	least	three
faces, we	see	that	 it	would	not	be	possible	to	have	a	regular	polyhedron	with	faces	that	are
regular	polygons	with 6 or	more	edges.
Putting	all	the	above	together, we	see	that	there	are	precisely	five	regular	polyhedra, as	listed

in	Table 3.2.1.

The	five	regular	polyhedra, which	are	listed	in	Table 3.2.1, are	shown	in	Figure 3.2.2. It	can
be	shown	that	 the	vertices	of	each	regular	polyhedron	lie	on	a	sphere	(see	Theorem	44.4	in
[Har00]	for	details). Notice	that	the	regular	polyhedra	are	named	by	the	number	of	faces	each
one	has. The	five	regular	polyhedra	are	also	known	as	the platonic	solids, in	honor	of	the	an-
cient	Greek	philosopher	Plato. (For	those	fans	of	children’s	literature, you	might	know	of	the
Dodecahedron	in	“The	Phantom	Tollbooth;” if	you	are	not	familiar	with	this	book	([Jus61]), it	is
highly	recommended.)

We	briefly	mentioned	the	notion	of	a	dual	polyhedron in	the	previous	section. Let	us	look
at	the	duals	of	each	of	the	five	regular	polyhedra. We	already	saw	in	the	previous	section	that
the	dual	of	 the	cube	 is	 the	octahedron. The	 reader	 can	verify, by	 sketching	 the	appropriate
picture, that	the	dual	of	the	octahedron	is	the	cube. Similarly, it	can	be	seen	that	the	dual	of
the	dodecahedron	is	the	icosahedron, and	the	dual	of	the	icosahedron	is	the	dodecahedron.
The	dual	of	 the	 tetrahedron	 is	 simply	 itself. We	 therefore	 see	 that	 the	 regular	polyhedra	are
self-contained	in	a	very	nice	arrangement	when	it	comes	to	duality.

Exercise 3.2.1.

(1) Which	of	the	regular	polyhedra	are	pyramids?

(2) Which	of	the	regular	polyhedra	are	bipyramids?

(3) Which	of	the	regular	polyhedra	are	prisms?

(4) Which	of	the	regular	polyhedra	are	antiprisms?

Exercise 3.2.2. Find	all	convex	polyhedra	that	are	both	bipyramids	and	antiprisms.
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Tetrahedron                                         Cube                                         Octahedron

Dodecahedron                                    Icosahedron

Figure	3.2.2

Exercise 3.2.3. Suppose	that	you	have	a	cube	made	out	of	clay; suppose	further	that	the
clay	is	red, but	the	outside	of	the	cube	is	painted	blue. You	then	slice	the	cube	in	a	straight
line	with	a	knife, causing	the	cube	to	break	into	two	pieces. Each	piece	has	an	exposed	red
polygon, where	the	cube	was	sliced. Depending	upon	how	you	slice	the	cube, you	might
get	different	exposed	polygons; all	the	exposed	polygons	will	be	convex. For	example, if
you	slice	parallel	to	one	of	the	faces	of	the	cube, your	exposed	polygon	will	be	a	square;
if	you	slice	off	a	corner	of	the	cube	right	next	to	a	vertex, your	exposed	polygon	will	be	a
triangle. What	are	all	the	possible	exposed	polygons	that	could	be	obtained	by	slicing	the
cube?

3.3 Semi-Regular	Polyhedra

Regular	polyhedra, as	discussed	in	the	previous	section, are	the	most	uniform	polyhedra. We
now	turn	to	a	slightly	broader	category	of	polyhedra, namely	the semi-regular	polyhedra, which
are	convex	polyhedra	that	satisfy	the	following	two	condition: (1)	every	face	is	a	regular	poly-
gon; (2)	all	vertices	are	 identical, which	means	 that	all	vertices	are	contained	in	same	types
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of	polygons	arranged	in	the	same	order. Observe	that	the	faces	are	not	all	required	to	be	the
same	type	of	polygon. It	is	the	case	that	all	edges	in	a	semi-regular	polyhedron	have	the	same
length. Certainly	every	regular	polyhedron	is	also	semi-regular, but	there	are	semi-regular	poly-
hedra	that	are	not	regular. For	example, we	see	in	Figure 3.3.1 a	semi-regular	polyhedron	called
the	rhombicuboctahedron, the	faces	of	which	are	all	equilateral	triangles	and	squares, and	the
vertices	of	which	are	each	contained	in	three	squares	and	one	triangle.

Figure	3.3.1

Suppose	we	are	given	a	vertex	in	a	polyhedron. We	define	the vertex	configuration of	this
vertex	 to	be	a	 list	of	numbers	of	 the	 form (a1, a2, . . . , an), where	 the	numbers a1 through
an are	the	numbers	of	edges	of	the	polygons	containing	the	vertex, listed	in	order	as	we	go
around	the	vertex	(it	does	not	matter	which	polygon	we	start	with). For	example, in	the	polyhe-
dron	shown	in	Figure 3.3.1, every	vertex	has	vertex	configuration (3, 4, 4, 4). The	definition	of
semi-regular	polyhedra	implies	that	in	any	semi-regular	polyhedron, all	vertices	have	the	same
vertex	configuration.
The	following	proposition	tells	us	all	the	possible	semi-regular	polyhedra.

Proposition 3.3.1. Every	semi-regular	polyhedron	is	one	of	the	following:

(A) A regular	polyhedron.

(B) A prism	over	a	regular	polygon, with	the	sides	made	up	of	squares.

(C) An	antiprism	over	a	regular	polygon, with	the	sides	made	up	of	equilateral	triangles.

(D) One	of	the 14 polyhedra	described	in	Table 3.3.1.

We	will	not	demonstrate	the	above	proposition. The	demonstration	is	similar	to, though	more
complex	than, the	demonstration	showing	that	there	are	only	five	regular	polyhedra	(Proposi-
tion 3.2.1); for	more	details, see, for	example, the	proof	of	Theorem	46.1	in	[Har00]. Pictures	of
the 14 polyhedra	listed	in	Table 3.3.1 are	given	in	Figure 3.3.2. Observe	in	Table 3.3.1 that	the
rhombicuboctahedron	and	pseudorhombicuboctahedron	have	the	same	vertex	configurations,
and	the	same	numbers	of	faces	of	each	type; however, these	polyhedra	are	not	identical. The
rhombicuboctahedron	is	shown	in	the	lower	left	corner	of	Figure 3.3.2, and	the	pseudorhom-
bicuboctahedron	is	shown	in	the	lower	right	corner	of	the	figure. The	pseudorhombicubocta-
hedron	can	be	obtained	from	the	rhombicuboctahedron	by	rotating	the	top	“cap”	by 45◦.
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Name Vertex	Config. Types	of	Faces
truncated	tetrahedron (3, 6, 6) 4 triangles	and 4 hexagons
truncated	octahedron (4, 6, 6) 6 squares	and 6 hexagons
truncated	icosahedron (5, 6, 6) 12 pentagons	and 20 hexagons
truncated	cube (3, 8, 8) 8 triangles	and 6 octagons
truncated	dodecahedron (3, 10, 10) 20 triangles	and 12 10-gons
truncated	cuboctahedron (4, 6, 8) 12 squares, 8 hexagons	and 6 octagons
truncated	icosidodecahedron (4, 6, 10) 30 squares, 20 hexagons	and 12 10-gons
cuboctahedron (3, 4, 3, 4) 8 triangles	and 6 squares
icosidodecahedron (3, 5, 3, 5) 20 triangles	and 12 pentagons
rhombicosidodecahedron (3, 4, 5, 4) 20 triangles, 30 squares	and 12 pentagons
snub	cube (3, 3, 3, 3, 4) 32 triangles	and 6 squares
snub	dodecahedron (3, 3, 3, 3, 5) 80 triangles	and 12 pentagons
rhombicuboctahedron (3, 4, 4, 4) 8 triangles	and 18 squares
pseudorhombicuboctahedron (3, 4, 4, 4) 8 triangles	and 18 squares

Table	3.3.1

Figure	3.3.2

The	14	polyhedra	listed	in	Table 3.3.1 are	often	called	the Archimedean	solids. Do	not	get
caught	up	in	deciphering	the	names	of	the	Archimedean	solids; it	is	not	important. Moreover,
not	all	authors	use	the	same	names	for	the 14 polyhedra	listed	in	Table 3.3.1. The	one	word	from
the	names	of	the	semi-regular	polyhedra	that	is	worth	mentioning	is	“truncated.” To	truncate	a
polyhedron, we	simply	chop	off	a	small	piece	around	each	vertex. For	example, a	truncated
cube	will	have	eight	small	triangles	(one	for	each	original	vertex	of	the	cube), and	six	octagons
(one	for	each	original	square	face	of	the	cube). The	reader	is	encouraged	to	locate	the	truncated
cube	in	Figure 3.3.2.
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The	 terms	 “semi-regular	polyhedron”	and	 “Archimedean	 solid”	are	used	with	 some	varia-
tion	in	the	literature. Some	texts	add	a	property	called	“vertex	transitivity” to	the	definition	of
semi-regular	 (though	we	do	not). We	do	not	yet	have	 the	 tools	 to	explain	vertex	 transitivity,
though	it	will	be	explained	in	Section 5.7. It	turns	out	that	all	the	polyhedra	listed	in	Proposi-
tion 3.3.1 except	for	one, the	pseudorhombicuboctahedron, satisfy	vertex	transitivity. Hence,
those	texts	that	require	vertex	transitivity	list	only	13	Archimedean	solids.
Observe	that	there	are	infinitely	many	different	semi-regular	polyhedra, because	there	are	in-

finitely	many	different	semi-regular	prisms	and	antiprisms	(there	being	one	of	each	for	each	pos-
sible	regular	polygon). However, because	the	regular	polyhedra, the	prisms	and	the	antiprisms
are	all	otherwise	known	polyhedra, some	texts	focus	on	the	Archimedean	solids	when	they	dis-
cuss	semi-regular	polyhedra. We	note	that, as	was	the	case	for	regular	polyhedra, the	vertices
of	each	semi-regular	polyhedron	lie	on	a	sphere	(see	Corollary	46.2	in	[Har00]	for	details).

Exercise 3.3.1. What	can	be	said	about	the	faces	of	the	dual	of	an	Archimedean	solid?

Exercise 3.3.2. We	know	that	the	dual	of	each	regular	polyhedron	is	itself	a	regular	poly-
hedron. Can	it	happen	that	the	dual	of	a	non-regular	semi-regular	polyhedron	is	itself	a
semi-regular	polyhedron? If	the	answer	is	yes, give	an	example, and	if	the	answer	is	no,
explain	why	not.

3.4 Other	Categories	of	Polyhedra

In	the	previous	two	sections	we	discussed	regular	polyhedra	and	semi-regular	polyhedra, which
are	types	of	convex	polyhedra	that	satisfy	certain	nice	properties. In	this	section	we	discuss	two
further	types	of	relatively	nice	polyhedra. We	start	with deltahedra, which	are	convex	polyhedra
made	up	entirely	of	equilateral	triangles. We	have	already	encountered	three	such	polyhedra,
namely	the	tetrahedron, the	octahedron	and	the	icosahedron. There	are	some	other	deltahedra,
besides	these	three, though	they	are	neither	regular	nor	semi-regular	(that	is, not	all	vertices	are
contained	in	same	types	of	polygons	arranged	in	the	same	order).

BEFORE YOU READ FURTHER:

There	are	five	deltahedra	that	are	neither	regular	nor	semi-regular. Try	to	find	as	many	of
these	as	you	can.

The	following	proposition	lists	all	the	deltahedra.

Proposition 3.4.1. Every	convex	deltahedron	is	either	a	regular	polyhedron	(a	tetrahedron, an
octahedron	or	an	icosahedron), or	is	one	of	the 5 polyhedra	listed	in	Table 3.4.1.
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Name Faces
triangular	bipyramid 6 triangles
pentagonal	bipyramid 10 triangles
snub	disphenoid 12 triangles
tricapped	triangular	prism 14 triangles
bicapped	square	antiprism 16 triangles

Table	3.4.1

We	note	that	not	all	authors	use	the	same	names	for	the	five	non-regular	convex	deltahedra
that	we	have	used	in	the	above	table, though	there	is	no	disagreement	over	the	actual	polyhe-
dra, regardless	of	their	names. Pictures	of	the 5 polyhedra	 listed	 in	Table 3.4.1 are	shown	in
Figure 3.4.1.

triangular bipyramid

tricapped triangular prism

bicapped square antiprism
snub disphenoid

pentagonal bipyramid

Figure	3.4.1

We	next	turn	to	an	even	more	broad	category	of	polyhedra, namely	the face-regular	polyhe-
dra, which	are	polyhedra	that	have	all	regular	faces, though	not	all	faces	are	necessarily	the
same, and	not	all	vertices	necessarily	have	the	same	configurations	of	faces	containing	them.
(We	follow	[Har00]	in	using	the	term	“face-regular.”) This	category	includes	all	regular	polyhe-
dra, all	semi-regular	polyhedra	and	all	deltahedra, but	there	are	others	as	well. For	example,
placing	a	pyramid	with	square	base	and	equilateral	sides	on	top	of	a	cube	yields	the	face-regular
polyhedron	shown	in	Figure 3.4.2. As	was	the	case	for	regular	and	semi-regular	polyhedra, all
the	edges	in	a	face-regular	polyhedron	must	have	the	same	length.
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Figure	3.4.2

It	turns	out	that	there	are	a	limited	number	of	convex	face-regular	polyhedra, though	the	proof
is	lengthy, and	is	beyond	the	scope	of	this	book. For	the	record, however, we	state	the	following
Proposition.

Proposition 3.4.2. Every	convex	face-regular	polyhedron	is	either	a	semi-regular	polyhedron,
or	one	of 91 other	polyhedra	that	are	not	semi-regular.

Of	the 91 convex	non-semi-regular	face-regular	polyhedra	mentioned	in	the	above	Propo-
sition, five	are	the	non-regular	deltahedra	listed	in	Proposition 3.4.1. We	should	mention	that
some	texts	list 92 convex	non-semi-regular	face-regular	polyhedra, because	they	do	not	con-
sider	the	pseudorhombicuboctahedron to	be	semi-regular	(as	mentioned	in	Section 3.3). These
91 (or, in	some	texts, 92)	polyhedra	are	sometimes	referred	to	as	the Johnson	solids, named	after
the	person	who	first	published	the	complete	list	of	these	polyhedra	(see	[Joh66], which	is	very
technical).
Having	shown	one	of	the	Johnson	solids	in	Figure 3.4.2, we	leave	it	to	the	reader	to	find	some

others	in	the	first	two	of	the	following	Exercises. We	note	that	all	face-regular	pyramids	were
found	in	Exercise 3.1.2.

Exercise 3.4.1. Find	all	convex	face-regular	polyhedra	that	have	identical	faces, other	than
the	deltahedra.

Exercise 3.4.2. Find	at	least	two	Johnson	solids	that	are	not	pyramids, bipyramids	or	delta-
hedra, and	are	different	from	the	one	shown	in	Figure 3.4.2.
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Exercise 3.4.3. A face-regular	polyhedron	is	called elementary if	it	cannot	be	broken	up
into	two	or	more	face-regular	polyhedra	that	are	joined	along	a	common	face. For	example,
the	octahedron	 is	not	elementary, because	 it	can	be	broken	up	 into	 two	pyramids	with
square	bases. Find	at	least	one	other	non-elementary	face-regular	polyhedron, and	at	least
one	elementary	face-regular	polyhedron.

Exercise 3.4.4. Suppose	we	have	two	face-regular	polyhedra, and	one	of	the	faces	in	the
first	polyhedron	is	identical	to	one	of	the	faces	in	the	second	polyhedron. We	can	then	glue
the	two	polyhedra	along	their	identical	faces, yielding	one	larger	polyhedra. For	example,
starting	with	a	cube	and	a	pyramid	with	a	square	base	and	equilateral	sides, and	gluing	the
two	along	a	square	face	in	each, results	in	the	polyhedron	shown	in	Figure 3.4.2.

(1) Is	 the	polyhedron	 that	 results	 from	 the	gluing	 two	 face-regular	polyhedra	by	 this
process	necessarily	face-regular? Explain	your	answer.

(2) Suppose	the	original	two	face-regular	polyhedra	were	both	convex. Is	the	polyhe-
dron	that	results	from	the	gluing	necessarily	convex? If	 the	answer	is	yes, explain
why, and	if	the	answer	is	no, give	an	example	to	show	why	not.

Exercise 3.4.5. Show	that	there	are	infinitely	many	non-convex	face-regular	polyhedra.

3.5 Enumeration	in	Polyhedra

One	of	the	nice	features	of	polyhedra	(as	opposed	to	“smooth”	objects, such	as	spheres)	is	that
they	offer	some	things	to	be	counted, namely	the	number	of	vertices, the	number	of	edges	and
the	number	of	faces. Given	a	polyhedron, we	let V , E and F, respectively, denote	the	number
of	vertices, edges	and	faces	of	the	polyhedron. For	example, for	a	cube	we	have V = 8, and
E = 12, and F = 6. For	convenience, we	write	these	three	numbers	as (V, E, F), called	the
face	vector of	the	polyhedron. Hence, the	face	vector	of	the	cube	is (8, 12, 6).
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Exercise 3.5.1.

(1) What	is	the	face	vector	of	each	of	the	regular	polyhedra?

(2) What	is	the	face	vector	of	each	of	the	semi-regular	polyhedra?

Exercise 3.5.2. Find	a	convex	polyhedron	such	that	neither E nor F is	divisible	by 3.

Exercise 3.5.3.

(1) What	is	the	face	vector	of	a	pyramid	over	an n-gon?

(2) What	is	the	face	vector	of	a	bipyramid	over	an n-gon?

(3) What	is	the	face	vector	of	a	prism	over	an n-gon?

(Note: Your	answer	for	each	part	of	this	exercise	will	involve	“n.”)

Exercise 3.5.4. Find	a	bipyramid	that	has	the	same	face	vector	as	the	icosahedron.

Exercise 3.5.5. Suppose	that	a	convex	polyhedron P has	face	vector (V, E, F). What	is	the
face	vector	of	the	dual	of P?

For	each	polyhedron, we	can	determine	 its	 face	vector. It	 can	happen, however, that	 two
different	polyhedra	have	the	same	face	vector	(just	as	two	different	people	can	have	the	same
height	and	weight). For	example, the	two	polyhedra	shown	in	Figure 3.5.1 have	the	same	face
vectors. Of	course, if	two	polyhedra	have	different	face	vectors, they	cannot	be	the	same.

What	can	be	said	about	the	numbers V , E and F that	arise	from	polyhedra? We	start	with	the
following	very	simple	result, which	follows	from	the	fact	that	a	polyhedron	is	a	solid	object	in
three	dimensional	space.
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(i)                                                (ii) 

Figure	3.5.1

Proposition 3.5.1. Suppose	that P is	a	polyhedron.

1. V ≥ 4.

2. E ≥ 6.

3. F ≥ 4.

In	order	to	say	more	about V , E and F, we	need	the	following	notion. Rather	than	simply
looking	at	the	number	of	faces, namely F, we	want	to	look	more	finely, and	count	the	number
of	faces	with 3 edges	each, denoted F3, the	number	of	faces	with 4 edges	each, denoted F4, etc.
In	general, for	each	positive	integer n (where n ≥ 3), let Fn denote	the	number	of	faces	with n
edges	each. Similarly, for	each	positive	integer n (where n ≥ 3), let Vn denote	the	number	of
vertices	contained	in n edges	each. For	example, for	the	polyhedron	shown	in	Figure 3.4.2, we
have F3 = 4, F4 = 5, F5 = 0, F6 = 0, etc.; we	also	have V3 = 4, V4 = 5, V5 = 0, V6 = 0,
etc. The	following	result	will	be	useful	in	proving	various	propositions	of	interest.

Proposition 3.5.2. Suppose	that P is	a	polyhedron.

1. F = F3 + F4 + F5 + F6 + · · · .

2. V = V3 + V4 + V5 + V6 + · · · .

3. 2E = 3F3 + 4F4 + 5F5 + 6F6 + · · · .

4. 2E = 3V3 + 4V4 + 5V5 + 6V6 + · · · .

Demonstration.

(1). This	equation	is	evidently	true, because	every	face	has	at	least	three	edges	(by	Proposi-
tion 3.1.1 (3)), and	is	thus	counted	precisely	one	among F3, F4, F5, etc.

(2). This	equation	is	evidently	true, because	every	vertex	is	contained	in	at	least	three	edges
(by	Proposition 3.1.1 (2)), and	is	thus	counted	precisely	one	among V3, V4, V5, etc.
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(3). The	sum 3F3 + 4F4 + 5F5 + 6F6 + · · · counts	all	the	edges	that	are	contained	in	all	the
faces	of	the	polyhedron. However, each	edge	of	the	polyhedron	is	contained	in	precisely	two
faces, using	Proposition 3.1.1 (1). Therefore, the	sum 3F3+4F4+5F5+6F6+ · · · counts	each
edge	twice, and	so	it	equals	twice	the	number	of	edges. In	other	words, we	have 3F3 + 4F4 +
5F5 + 6F6 + · · · = 2E.

(4). This	argument	is	very	much	like	the	one	for	Part (3)	of	this	proposition, using	the	fact	that
each	edge	of	the	polyhedron	contains	two	vertices.

Part (3)	of	the	above	proposition	boils	down	to	a	much	simpler	statement	in	the	case	where	all
the	faces	have	the	same	number	of	edges. More	precisely, if P is	a	polyhedron	such	that	all	its
faces	are n-gons, then nF = 2E. The	reader	is	asked	to	demonstrate	this	fact	in	Exercise 3.5.6.
In	the	particular	case	where P has	all	triangular	faces, then 3F = 2E.

Exercise 3.5.6. [Used	in	This	Section] Suppose	that P is	a	polyhedron.

(1) Suppose	that	all	the	faces	of P are n-gons. Show	that nF = 2E.

(2) Suppose	that	all	the	faces	of P are	triangles. Show	that F is	divisible	by 2, and E is
divisible	by 3.

(3) Suppose	that	every	vertex	of P is	contained	in q edges. Show	that qV = 2E.

BEFORE YOU READ FURTHER:

Are	there	any	interesting	relations	between	the	three	numbers V , E and F that	hold	for	all
polyhedra, or, at	least, all	convex	polyhedra? Try	to	look	for	such	relationships	yourself.
Look	at	 the	values	of V , E and F for	various	examples	of	polyhedra, for	 instance	 the
regular	and	semi-regular	polyhedra; can	you	find	any	patterns? Can	you	find	any	relations
between V , E and F that	holds	in	all	examples	you	have	examined?

There	are	indeed	relations	between	the	numbers V , E and F that	hold	for	all	polyhedra. One
example	of	such	a	relation	is	given	in	the	following	proposition.

Proposition 3.5.3. Suppose	that P is	a	polyhedron.

1. E ≥ 3

2
V .

2. E ≥ 3

2
F.

Demonstration.
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(1). Using	Proposition 3.5.2 (4)(2), in	that	order, we	see	that

2E = 3V3 + 4V4 + 5V5 + 6V6 + · · ·
≥ 3V3 + 3V4 + 3V5 + 3V6 + · · · = 3(V3 + V4 + V5 + V6 + · · · ) = 3V.

(2). This	case	is	very	similar	to	Part (1)	of	this	proposition; the	details	are	left	to	the	reader.

It	follows	from	the	above	proposition	that	for	any	polyhedron, the	number	of	edges	is	always
greater	than	both	the	number	of	vertices	and	the	number	of	faces.
A more	substantial	(and	more	difficult	to	demonstrate)	relation	between	the	numbers V , E and

F that	holds	for	any	convex	polyhedron	is	the	following	proposition, known	as	Euler’s	Formula;
it	is	due	to	the	great	mathematician	Leonhard	Euler (1707-1783).

Proposition 3.5.4 (Euler’s	Formula). For	any	convex	polyhedron, we	have

V − E+ F = 2.

Demonstration. Suppose	we	are	given	a	convex	polyhedron P. We	want	 to	figure	out	what
V − E+ F equals. The	first	step	in	this	demonstration	is	to	form	the	projection	of P, which	we
now	describe.
Consider, for	example, a	cube. Imagine	that	the	cube	is	made	not	of	squares	glued	together,

but	is	just	a	wire	frame. We	could	then	put	a	light	right	above	the	wire	frame	cube, and	a	piece
of	paper	below	the	cube, as	shown	in	Figure 3.5.2 (i). The	light	casts	a	shadow	on	the	paper; the
shadow	is	pictured	in	Figure 3.5.2 (ii). We	call	this	shadow	the projection of	the	cube. Notice
that	the	projection	is	made	up	of	edges	and	vertices, and	that	these	edges	and	vertices	divide
up	the	plane	into	a	number	of	regions. We	observe	further	that	the	number	of	vertices	in	the
projection	is	the	same	as	the	number	of	vertices	in	the	original	cube, namely 8, and	that	the
number	of	edges	 in	 the	projection	 is	 the	same	as	 the	number	of	edges	 in	 the	original	cube,
namely 12. Further, we	notice	that	the	projection	divides	up	the	plane	into 6 regions	(of	which
5 are	“bounded”	and 1 is	“unbounded”), and	that	this	number	of	regions	equals	the	number	of
faces	of	the	cube.

We	could	similarly	form	the	projection	of	any	convex	polyhedron P. In	Figure 3.5.2 (iii)	we
see	the	projection	of	the	regular	tetrahedron. The	same	observation	about	numbers	of	vertices,
edges	and	regions	that	held	for	the	projection	of	the	cube	holds	for	the	projection	of	any	convex
polygon. That	is, the	number	of	vertices	of	the	projection	equals V , the	number	of	edges	of	the
projection	equals E, and	the	number	of	regions	in	the	plane	formed	by	the	projection	equals F.
Therefore, to	figure	outV−E+F for P, we	can	just	as	well	figure	outV−E+F for	the	projection
(where V and E now	mean	the	number	of	vertices	and	edges	respectively	of	the	projection, and
F now	means	the	number	of	regions). It	turns	out	that	the	projection	is	much	easier	to	work	with
than	the	original	polyhedron.
We	now	proceed	by	modifying	the	projection	one	step	at	a	time. We	will	verify	that	each

modification	does	not	change	the	sum V − E+ F, though	it	might	change	individual	values	of
V , E and F. First, we	ask	whether	the	edges	on	the	projection	have	any	complete	“loops.” For
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(i)                                            (ii)                                         (iii)

Figure	3.5.2

example, suppose	the	projection	is	as	shown	in	Figure 3.5.3 (i); there	are	a	number	of	complete
loops	in	this	projection, for	example, the	edges	labeled a, b, c and d form	a	loop. We	proceed
as	follows. Suppose	we	have	a	loop	in	our	projection. Then	choose	one	of	the	edges	that	make
up	the	loop	(it	does	not	matter	which), and	we	will	remove	that	edge. In	Figure 3.5.3 (ii), we	have
removed	the	edge	labeled b. The	result	is	a	new	configuration	of	vertices, edges	and	regions.
What	happens	to V , E and F as	a	result	of	removing	one	edge	from	a	loop? We	observe	that V
is	unchanged, that E decreases	by 1, and	that F decreases	by 1. Hence, the	new	value	of	the
sum	we	are	calculating	is

V − (E− 1) + (F− 1) = V − E+ F.

In	other	words, the	sumV−E+F is	the	same	in	the	new	configuration	as	in	the	old	configuration.
Now	consider	the	new	configuration	of	vertices, edges	and	regions. It	has	fewer	loops	than

the	original	projection. If	there	are	still	loops, then	remove	another	edge	from	one	of	the	loops.
Keep	removing	one	edge	at	a	time	until	there	are	no	more	loops	left. After	all	the	necessary
removals, the	value	of V − E + F is	still	unchanged, but	we	now	have	a	simpler	situation, in
that	there	are	no	loops. For	example, we	see	in	Figure 3.5.3 (iii)	one	possible	result	of	removing
edges	from	all	the	loops	in	Figure 3.5.3 (i). (There	are	different	choices	for	removing	edges	from
loops	at	each	stage, so	the	resulting	configuration	can	vary, but	it	will	make	no	difference.)
We	now	perform	a	different	 type	of	modification. Because	our	 new	configuration	has	 no

loops, it	must	have	“free”	vertices; that	is, vertices	that	are	the	endpoints	of	only	one	edge. For
example, the	vertex	labeled A in	Figure 3.5.3 (iii)	is	a	free	vertex. We	then	choose	a	free	vertex
in	our	configuration	without	loops, and	then	remove	both	the	free	vertex	and	the	single	edge	of
which	the	vertex	is	an	endpoint; we	leave	in	place	the	other	endpoint	of	the	removed	edge. In
Figure 3.5.3 (iv), we	have	removed	the	vertex A and	the	edge	that	has A as	an	endpoint. What
happens	to V , E and F as	a	result	of	this	new	type	of	procedure? We	observe	that V is	decreases
by 1, that E decreases	by 1, and	that F is	unchanged. Hence, the	new	value	of	the	sum	we	are



3.5	Enumeration	in	Polyhedra 93

calculating	is
(V − 1)− (E− 1) + F = V − E+ F.

In	other	words, the	sum V − E + F is	once	again	the	same	in	the	new	configuration	as	in	the
old	configuration.
Now	consider	the	new	configuration	of	vertices, edges	and	regions. It	has	fewer	edges	than	the

original	projection. If	there	are	still	edges, then	there	must	still	be	free	vertices. Keep	removing
one	edge	at	a	time	until	there	is	only	one	edge	left. Then, no	matter	what	the	original	projection
was, the	final	configuration	will	 look	like	the	one	shown	in	Figure 3.5.3 (v). At	each	step	of
our	procedure, the	value	of V − E+ F never	changed. Hence, if	we	can	compute	the	value	of
V − E+ F for	the	final	configuration, that	will	be	the	same	value	as	for	the	original	projection,
and	hence	for	the	original	polyhedron. In	Figure 3.5.3 (v)	we	see	that V = 2, that E = 1 and
that F = 1. Hence V − E + F = 2 − 1 + 1 = 2. Therefore V − E + F = 2 for	the	original
polyhedron, which	is	what	we	wanted	to	show.

(i)                                                 (ii)                                              (iii)

(iv)                                                (v)          

a

b

c

d

a c

A

Figure	3.5.3

Euler’s	Formula	has	many	uses. For	example, we	can	use	it	to	deduce	further	relations	between
the	numbers V , E and F for	convex	polyhedra. One	such	result	is	the	following	proposition.

Proposition 3.5.5. Suppose	that P is	a	convex	polyhedron.
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1. 4 ≤ F ≤ 2V − 4.

2. 4 ≤ V ≤ 2F− 4.
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Demonstration.

(1). If	we	multiply	Euler’s	Formula	by 2 we	have

2V − 2E+ 2F = 4.

Next, we	know	from	Proposition 3.5.3 (2)	that 2E ≥ 3F. If	we	subtract	two	numbers	from	the
same	number, then	subtracting	the	smaller	number	gives	a	bigger	result. So, we	see	that

2V − 3F+ 2F ≥ 2V − 2E+ 2F = 4.

It	follows	that
2V − F ≥ 4.

Rearranging, we	obtain
2V − 4 ≥ F.

Combining	this	last	result	with	Proposition 3.5.1 (3), we	derive	that

4 ≤ F ≤ 2V − 4.

(2). This	argument	is	very	much	like	the	one	for	Part (1)	of	this	proposition, with	the	role	of
faces	and	vertices	interchanged.

Exercise 3.5.7. This	exercise	uses	Exercise 3.5.6.
Suppose	that P is	a	convex	polyhedron.

(1) Suppose	that	all	the	faces	of P are	triangles. Find	a	formula	for	each	of E and F in
terms	of V .

(2) Suppose	that	all	the	faces	of P are	quadrilaterals. Find	a	formula	for	each	of E and
F in	terms	of V .

(3) Suppose	that	all	the	faces	of P are	pentagons. Find	a	formula	for	each	of E and F in
terms	of V .

Exercise 3.5.8. Suppose	 that P is	a	convex	polyhedron, and	that	all	 the	 faces	of P are
triangles. Assume	further	that P has	at	least	five	vertices. Is	there	always	a	bipyramid	over
some n-gon	that	has	the	same	face	vector	as P? If	there	is, find n in	terms	of	the	number
of	vertices	of P.
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Exercise 3.5.9. Suppose	that	a	convex	polyhedron P is	self-dual	(that	is, the	polyhedron	is
it’s	own	dual). Find	a	formula	for	each	of E and F in	terms	of V .

Exercise 3.5.10. Find	 all	 possible	 convex	 polyhedra P that	 are	 self-dual	 (as	 in	 Exer-
cise 3.5.9), and	all	the	faces	of	which	are	triangles.

Exercise 3.5.11. Suppose	that P is	a	convex	polyhedron. Show	that E ≤ 3F− 6.

Exercise 3.5.12. Suppose	that P is	a	convex	polyhedron. Show	that P must	contain	at	least
one	 face	 that	has	either 3, 4 or 5 edges. (In	other	words, this	exercise	shows	that	 there
cannot	be	a	convex	polyhedron	with	all	faces	having 6 or	more	edges.)

We	are	now	 in	 a	position	 to	discuss	 a	 very	 interesting	question	 regarding	 face	 vectors	 of
convex	polyhedra. We	know	that	every	convex	polyhedron	has	a	face	vector (V, E, F). Can	we
go	backwards	in	this	process? That	is, suppose	we	are	given	three	positive	integers (x, y, z);
do	these	three	numbers	necessarily	form	the	face	vector	of	a	convex	polyhedron? The	answer
is	no. For	example, suppose	we	were	given	the	numbers (5, 7, 1). There	cannot	be	a	convex
polyhedron	with	these	numbers	as	its	face	vector, because F ≥ 4 for	any	any	convex	polygon
(as	in	Proposition 3.5.1 (3)). How	about (5, 9, 7)? We	do	not	have	a	problem	with V , E and
F not	being	large	enough, but	there	still	cannot	be	a	convex	polyhedron	with	these	numbers
as	its	face	vector, because 5 − 9 + 7 = 3, and	so	Euler’s	Formula	is	not	satisfied. How	about
(8, 11, 5)? Euler’s	Formula	is	satisfied	this	time, but	there	still	cannot	be	a	convex	polyhedra
with	these	numbers	as	its	face	vector, because 2 · 5 − 4 = 6, and	yet 8 ≰ 6, so	these	number
do	not	satisfy	Proposition 3.5.5 (2).
The	above	examples	show	us	some	of	the	reasons	why	three	positive	integers (x, y, z) might

not	be	the	face	vector	of	a	convex	polyhedron. The	following	Proposition	says	that	these	are	the
only	possible	things	that	can	go	wrong.

Proposition 3.5.6. Suppose	we	are	given	three	positive	integers (x, y, z). Then	these	numbers
are	the	face	vector	of	a	convex	polyhedron	if	and	only	if	the	following	three	criteria	hold:

1. x− y+ z = 2.

2. 4 ≤ z ≤ 2x− 4.

3. 4 ≤ x ≤ 2z− 4.
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In	other	words, if (x, y, z) satisfy	the	above	three	criteria, then	they	are	the	face	vector	of	some
convex	polyhedron	(possibly	more	than	one); if	they	do	not	satisfy	all	three	criteria, then	they
are	not	the	face	vector	of	a	convex	polyhedron. The	demonstration	of	the	above	proposition	is
beyond	the	scope	of	this	book.
For	example, suppose	we	are	given	the	numbers (5, 9, 6). It	can	be	verified	that	these	numbers

satisfy	all	three	criteria	in	Proposition 3.5.6, and	so	they	must	be	the	face	vector	of	some	polyhe-
dron. The	reader	is	asked	to	find	such	a	polyhedron	(hint: try	constructing	pyramids, bipyramids,
and	the	like	with 5 vertices).

Exercise 3.5.13. For	each	of	the	sets	of	three	numbers	given	below, state	whether	or	not	it
is	the	face	vector	of	a	convex	polyhedron. If	it	is	the	face	vector	of	a	convex	polyhedron,
find	such	a	polyhedron; if	not, explain	why	not.

(1) (5, 10, 6).

(2) (12, 18, 8).

(3) (23, 33, 12).

(4) (10, 20, 12).

Does	Euler’s	Formula	hold	for	all	polyhedra? The	answer	is	definitely	no. For	example, consider
the	polyhedral	“torus” shown	in	Figure 3.5.4 (“torus”	is	the	mathematical	name	for	anything
shaped	like	the	surface	of	a	bagel). It	is	seen	from	the	figure	that	the	face	vector	of	this	polyhedron
is (16, 32, 16), and	hence V − E + F = 16 − 32 + 16 = 0. Therefore	Euler’s	Formula	does
not	hold	in	this	case. It	turns	out	that	Euler’s	Formula	holds	for	those	polyhedra	that	do	not	have
“holes”	through	them, though	it	is	beyond	the	scope	of	this	book	to	give	the	details	of	why	this
is	true.

Figure	3.5.4
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Even	though	Euler’s	formula	does	not	hold	for	all	polyhedra, it	turns	out	that	the	concept	of
V − E + F is	nonetheless	useful	for	all	polyhedra. For	any	polyhedron P, we	define	the Euler
characteristic of P, denoted χ(P), to	be	the	number

χ(P) = V − E+ F.

For	any	convex	polyhedra P, we	know	from	Euler’s	Formula	that χ(P) = 2. If	we	denote	the
polyhedron	shown	in	Figure 3.5.4 by T , then	we	saw	that χ(T) = 0. Though	we	cannot	go	into
further	details	here, we	remark	that	the	Euler	characteristic, and	its	generalizations, is	a	very
important	concept	in	a	number	of	branches	of	modern	mathematics.
Finally, we	use	Euler’s	 formula	 to	give	another	proof	ofProposition 3.2.1, which	describes

the	 five	 platonic	 solids. What	 is	 interesting	 about	 this	 second	 proof	 is	 that	 it	 is	 entirely
combinatorial—that	is, it	is	based	upon	whole	numbers—and	makes	no	use	of	geometry.

Demonstration	of	Proposition 3.2.1. Suppose P is	a	regular	polyhedron. Then	by	definition P
is	convex, all	faces	of P are	identical; and	all	vertices	of P are	contained	in	the	same	number	of
faces	(and	hence	the	same	number	of	edges).
Suppose	that	every	polygon	of P has n edges, and	that	every	vertex	of P is	contained	in q

edges. Then	by	Exercise 3.5.6 we	know	that nF = 2E and qV = 2E. Hence F = 2
n
E and

V = 2
q
E.

We	now	substitute	the	above	formulas	for F and V into	Euler’s	formula, obtaining

2

q
E− E+

2

n
E = 2.

Dividing	every	term	in	the	above	equation	by 2E and	canceling	yields

1

q
−

1

2
+

1

n
=

1

E
.

Because E is	a	positive	number, it	follows	that

1

q
−

1

2
+

1

n
> 0,

and	therefore
1

q
+

1

n
>

1

2
. (3.5.1)

What	values	of n and q could	satisfy	Equation (3.5.1)? The	numbers n and q are	both	whole
number. Moreover, we	know	that n ≥ 3, because	every	polygon	has	at	 least 3 edges, and
q ≥ 3, because	in	a	polyhedron	every	vertex	is	contained	in	at	least 3 edges.
Could	it	be	that n ≥ 6? Suppose	that	is	true. Then 1

n
≤ 1

6
. Then	Equation (3.5.1)	implies	that

1

q
+

1

6
≥ 1

q
+

1

n
>

1

2
,
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which	implies	that
1

q
>

1

2
−

1

6
=

1

3
.

It	would	follow	that q < 3, which	is	impossible. Hence n ≤ 5. Therefore n is	one	of 3, 4 and
5.
A similar	argument	shows	that q is	one	of 3, 4 and 5. There	are	then	nine	possible	cases	for

n and q.

1. n = 3 and q = 3. We	verify	that 1
3
+ 1

3
= 2

3
> 1

2
. This	polyhedron	is	a	tetrahedron.

2. n = 3 and q = 4. We	verify	that 1
3
+ 1

4
= 7

12
> 1

2
. This	polyhedron	is	an	octahedron.

3. n = 3 and q = 5. We	verify	that 1
3
+ 1

5
= 8

15
> 1

2
. This	polyhedron	is	a	tetrahedron.

4. n = 4 and q = 3. We	verify	that 1
4
+ 1

3
= 7

12
> 1

2
. This	polyhedron	is	a	cube.

5. n = 4 and q = 4. We	observe	that 1
4
+ 1

4
= 1

2
, and	so	Equation (3.5.1)	is	not	satisfied.

Hence, there	is	no	such	regular	polyhedron.

6. n = 4 and q = 5. We	observe	that 1
4
+ 1

5
= 9

20
, and	so	Equation (3.5.1)	is	not	satisfied.

Hence, there	is	no	such	regular	polyhedron.

7. n = 5 and q = 3. We	verify	that 1
5
+ 1

3
= 8

15
> 1

2
. This	polyhedron	is	a	icosahedron.

8. n = 5 and q = 4. We	observe	that 1
5
+ 1

4
= 9

20
, and	so	Equation (3.5.1)	is	not	satisfied.

Hence, there	is	no	such	regular	polyhedron.

9. n = 5 and q = 5. We	observe	that 1
5
+ 1

5
= 2

5
, and	so	Equation (3.5.1)	is	not	satisfied.

Hence, there	is	no	such	regular	polyhedron.

We	have	therefore	verified	that	the	regular	polyhedra	are	precisely	the	five	polyhedra	listed
in	Table 3.2.1.

3.6 Curvature	of	Polyhedra

If	we	think	of	the	“surface	of	a	polyhedron,” we	notice	that	at	some	vertices	the	surface	appears	to
be	“curving”	more	rapidly, and	in	other	places	it	appears	to	be	curving	less. (The	word	“curved”
might	seem	strange	when	applied	to	something	that	is	made	up	of	flat	polygons, but	the	same
term	is	also	applied	to	smooth	surfaces	(such	as	a	sphere), and	it	is	quite	standard.) For	example,
consider	the	surface	of	the	polyhedron	shown	in	Figure 3.6.1. Intuitively, the	surface	is	more
sharply	curved	at	the	vertex	labeledA than	at	the	vertex	labeled B. It	would	be	nice	to	quantify
curvature by	assigning	to	each	vertex	a	number	that	tells	us	how	curved	the	surface	is	at	the
vertex. A very	nice	method	for	so	doing, which	we	now	describe, goes	back	to	Descartes. (See
[Fed82]	for	a	translation	and	exposition	of	Descartes’	work	on	polyhedra.)
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A

B

Figure	3.6.1

The	idea	of	curvature	at	a	vertex	of	a	polyhedron	is	to	see	how	far	the	neighborhood	of	the
vertex	is	from	being	flat. If	the	neighborhood	is	flat, the	curvature	should	be 0. Given	that	a	flat
plane	has	angle 360◦ around	any	point, we	use 360◦ as	our	basis	of	comparison	for	measuring
curvature. For	any	polyhedron, and	for	any	vertex	of	the	polyhedron, we	define	the angle	defect
at	the	vertex	to	be 360◦ minus	the	sum	of	all	the	angles	(in	the	various	faces	of	the	polyhedron)
that	contain	the	vertex. The	angle	defect	is	the	common	measure	of	curvature	for	vertices	of
polyhedra. For	example, if v is	a	vertex	in	a	regular	octahedron, then	the	vertex	is	contained	in
four 60◦ angles, and	therefore	the	angle	defect	at	the	vertex	is

360◦ − (60◦ + 60◦ + 60◦ + 60◦) = 120◦.

By	comparison, ifw is	a	vertex	in	a	regular	dodecahedron, then	the	vertex	is	contained	in	three
108◦ angles, and	therefore	the	angle	defect	at	this	vertex	is

360◦ − (108◦ + 108◦ + 108◦) = 36◦.

The	fact	that	the	angle	defect	at	the	vertex	of	the	regular	octahedron	is	larger	than	the	angle
defect	at	the	vertex	of	the	regular	dodecahedron	corresponds	to	the	fact	that	the	octahedron
is	intuitively	more	“sharply	pointed”	at	its	vertices	than	the	dodecahedron, as	can	be	seen	by
looking	at	pictures	of	each	(or, even	better, looking	at	models	of	them).

Exercise 3.6.1. Find	the	angle	defect	at	each	of	the	vertices	of	the	following	polyhedra.

(1) A cube.

(2) A regular	icosahedron.

(3) The	polyhedron	shown	in	Figure 3.4.2 (assuming	that	all	the	triangles	are	equilateral).
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It	can	be	seen, using	Proposition 3.1.2, that	in	a	convex	polyhedron, the	angle	defect	at	any
vertex	is	positive. However, in	non-convex	polyhedra, it	is	possible	to	have	a	negative	angle
defect	at	a	vertex. The	reader	should	try	to	find	an	example	of	a	polyhedron	with	a	vertex	that
has	negative	angle	defect.
Simply	calculating	angle	defects	 is	of	 interest, but	 there	 is	more	 to	 the	 story	 than	 that. In

particular, Descartes	discovered	a	very	subtle	fact	about	angle	defects, which	we	now	state.

BEFORE YOU READ FURTHER:

Descartes	looked	at	the	sum	of	all	the	angle	defects	in	a	convex	polyhedron. Examine	a
few	examples	of	polyhedra, both	regular	and	non-regular, and, in	each	example, calculate
the	sum	of	the	angle	defects	at	all	the	vertices. Do	you	notice	a	pattern?

If	you	did	the	above	calculations	correctly, you	should	have	noticed	that	 for	every	convex
polyhedron	that	you	tried, the	sum	of	the	angle	defects	at	all	 the	vertices	is 720◦. Descartes
showed	that	this	remarkable	result	indeed	holds	for	all	convex	polyhedra. Given	that	we	know
about	the	Euler	characteristic of	polyhedra	(defined	in	Section 3.5), we	can	generalize	Descartes’
result	as	follows. (Descartes, who	lived	well	before	Euler, was	most	likely	unaware	of	the	Euler
characteristic, though	there	is	some	debate	about	that	in	the	literature.)

Proposition 3.6.1 (Generalized	Descartes’	Theorem). Suppose	that P is	a	polyhedron. Then	the
sum	of	the	angle	defects	at	all	the	vertices	of P equals 360◦ · χ(P).

Demonstration. Suppose a1, a2, . . . , aV are	the	vertices	of K, and	suppose	that t1, t2, . . . , tF
are	the	faces	of K. Note	that	there	are V vertices	and F faces. Suppose	that	face tk hasCk edges.
We	observe	that

C1 + C2 + · · ·+ CF = 2E;

this	equation	can	be	shown	very	similarly	to	the	demonstration	of	Proposition 3.5.2 (3); we	leave
the	details	to	the	reader.
For	a	vertex ak, we	let dk denote	the	angle	defect	at ak; that	is, we	have

dk = 360◦ − (sum	of	the	angles	at	vertex ak).

The	sum	of	the	angle	defects, which	is	what	we	are	trying	to	evaluate, is	therefore d1 + d2 +
· · ·+ dV . We	now	use	Proposition 2.3.3 and	the	above	formula	for C1 +C2 + · · ·+CF to	see
that

d1+d2 + · · ·+ dV =

= [360◦ − (sum	of	angles	at a1)] + · · ·+ [360◦ − (sum	of	angles	at aV)]

= [360◦ + · · ·+ 360◦︸ ︷︷ ︸
V times

]− [(sum	of	angles	at a1) + · · ·+ (sum	of	angles	at aV)]

= 360◦ · V − (sum	of	all	angles	of P)
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= 360◦ · V − [(sum	of	angles	in t1) + · · ·+ (sum	of	angles	in tF)]

= 360◦ · V − [(C1 − 2)180◦ + · · ·+ (CF − 2)180◦]

= 360◦ · V − [(C1 + · · ·+ CF)180
◦ − (2 · 180◦ + · · ·+ 2 · 180◦︸ ︷︷ ︸

F times

)]

= 360◦ · V − [2E · 180◦ − 360◦ · F]
= 360◦ · V − 360◦ · E+ 360◦ · F
= 360◦ · χ(P).

We	note	that	the	Generalized	Descartes’	Theorem	ultimately	relies	upon	Euclid’s	Fifth	Postu-
late, because	in	the	proof	of	the	theorem	we	use	the	formula	in	Proposition 2.3.3 for	the	sum	of
the	interior	angles	in	a	polygon	(which	in	turn	makes	use	of	the	fact	that	the	sum	of	the	interior
angles	in	a	triangle	is 180◦, which	is	proved	using	Euclid’s	Fifth	Postulate).
Finally, we	can	use	 the	Generalized	Descartes’	Theorem	 to	give	another	demonstration	of

Euler’s	Formula	(Proposition 3.5.4). For	this	new	demonstration, we	need	the	following	obser-
vation	concerning	the	Generalized	Descartes’	Theorem. Recall	that	our	definition	of	polyhedra,
as	stated	in	Section 3.1, involves	three	criteria	on	the	faces	of	each	polyhedra, namely	that	(1)
faces	are	glued	edge-to-edge; (2)	every	edge	of	a	face	is	glued	to	the	edge	of	precisely	one	other
face; and	(3)	no	two	faces	 intersect	except	possibly	along	their	edges	where	 they	are	glued.
The	third	condition	implies	that	a	polyhedron	does	not	have	any	self-intersections. Actually, if
we	look	carefully	at	the	demonstration	of	the	Generalized	Descartes’	Theorem, it	is	seen	that
whereas	criteria	(1)	and	(2)	are	crucial	(in	showing	that C1 + C2 + · · · + CF = 2E), we	never
actually	use	criterion	(3). Hence, the	conclusion	of	Generalized	Descartes’	Theorem	holds	even
for	polyhedra	that	do	not	satisfy	criterion	(3); that	is, for	polyhedra	in	which	faces	might	overlap
each	other, though	we	still	only	think	of	the	faces	as	being	glued	to	each	other	along	their	edges.

Second	Demonstration	of	Euler’s	Formula	(Proposition 3.5.4). Suppose	 that P is	 a	 convex
polyhedron. Our	goal	is	to	show	that χ(P) = 2.
Choose	a	 face	of P; call	 this	 face C. We	 then	start	by	expanding C in	 such	a	way	 that	 it

becomes	wider	than	the	rest	of P. See	Figure 3.6.2 (i)	and	(ii)	for	an	example	of	such	stretching.
(Note	that	this	sort	of	stretching	is	possible	precisely	because P is	convex.)

Next, we	collapse	all	of P onto	the	faceC, making P completely	flat. By	the	original	convexity
of P, we	see	that	in	the	collapsed	version	of P there	are	two	layers	of	faces: we	have C on	the
bottom, and	then	the	rest	of P on	top	in	a	single	layer. The	collapsed	version	of P is	no	longer
a	polyhedron	as	we	have	discussed	up	 till	now, but	 it	does	satisfy	criteria	 (1)	and	 (2)	 in	 the
definition	of	polyhedra. See	Figure 3.6.2 (iii)	 for	 the	result	of	collapsing	 the	example	shown
in	Figure 3.6.2 (ii). What	we	see	in	Figure 3.6.2 (iii)	looks	very	much	like	the	projections	we
saw	 in	Figure 3.5.2 (ii)	and	 (iii), although	we	are	 thinking	of	 it	here	 in	a	very	different	way.
In	Figure 3.5.2 (ii)	and	(iii)	we	thought	of	the	polyhedron	as	a	wire	frame	with	no	faces, and
then	drew	the	shadow	of	the	frame; by	contrast, in	Figure 3.6.2 (iii)	we	want	to	think	of	the
polyhedron	as	having	its	faces, and	simply	collapsing	the	polyhedron, faces	and	all.
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(i)                                       (ii)                                                    (iii)

C

Figure	3.6.2

Observe	that	the	above	stretching	and	collapsing	process	changes	the	geometry	of P, but	it
does	not	change V , E or F. Hence, if	we	want	to	show	that χ(P) = 2, it	suffices	to	work	with
the	collapsed	version	of P, instead	of	the	original. So, from	now	on, when	we	say	“P,” we	will
refer	to	the	collapsed	version.
Let	us	now	calculate	the	sum	of	the	angle	defects	in P. For	each	vertex	of P that	is	in	the	interior

of C, we	see	that P is	flat	near P, and	therefore	the	angle	defect	is	zero. Hence, the	only	angle
defects	that	are	not	zero	are	on	the	boundary	ofC. Let a1, a2, . . . , an denote	the	vertices	of	the
boundary	of C. Let α1, α2, . . . , αn denote	the	interior	angles	at a1, a2, . . . , an respectively,
and	let β1, β2, . . . , βn denote	the	corresponding	exterior	angles. (See	Figure 2.3.6 (i)	 for	an
example	of	these	angles.) Consider	vertex a1. Given	the	way	that P is	collapsed	onto C, we
see	that	the	sum	of	the	angles	at	vertex a1 is	precisely 2α1. Hence	the	angle	defect	at a1 is
360◦− 2α1. However, we	can	simplify	this	expression	as 360◦− 2α1 = 2(180◦−α1) = 2β1,
using	what	we	know	about	exterior	angles	from	Section 2.3. The	same	argument	shows	that	the
angle	defect	at a2 is 2β2, and	similarly	for	the	rest	of	the	vertices	of C. Finally, we	see	that	the
sum	of	all	the	angle	defects	of P equals

2β1 + 2β2 + · · ·+ 2βn = 2(β1 + β2 + · · ·+ βn).

However, we	note	that	Proposition 2.3.3 (2)	tells	us	that β1+β2+ · · ·+βn = 360◦. It	follows
that	the	sum	of	all	the	angle	defects	of P equals 720◦.
On	 the	other	 hand, by	 the	Generalized	Descartes’	Theorem	 (Proposition 3.6.1), which	 as

mentioned	prior	to	this	demonstration	can	be	applied	to P even	when	collapsed, we	know	that
the	sum	of	the	angle	defects	of P is 360◦ · χ(P). Comparing	our	two	calculations	of	the	sum	of
the	angle	defects, we	see	that 360◦ · χ(P) = 720◦. It	follows	that χ(P) = 2, which	is	the	same
as V − E+ F = 2.
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4
Isometries

4.1 Introduction

An	excellent	place	to	start	the	study	of	symmetry is	the	book	[Wey52], by	Herman	Weyl, one
of	 the	great	mathematicians	of	 the	20th	century. I recommend	a	careful	 reading	of	 the	first
chapter	(Bilateral	Symmetry)	only; after	that	the	author	lapses	into	some	technicalities	that	are
best	 skipped	over, though	 in	between	 the	 technical	parts	 there	are	philosophical	 ideas	 (and
pictures)	that	are	well	worth	reading. We	begin	with	a	lengthy	quote	from	Weyl	(pp.	3–6); the
italics	are	in	the	original.

“If	I am	not	mistaken	the	word symmetry is	used	in	our	everyday	language	in	two
meanings. In	the	one	sense	symmetric	means	something	like	well-proportioned,
well-balanced, and	symmetry	denotes	that	sort	of	concordance	of	several	parts	by
which	they	integrate	into	a	whole. Beauty is	bound	up	with	symmetry. . . In	this
sense	the	idea	is	by	no	means	restricted	to	spatial	objects; the	synonym	“harmony”
points	more	towards	its	acoustical	and	musical	than	its	geometric	applications . . .

“The	image	of	the	balance	provides	a	natural	link	to	the	second	sense	in	which	the
word	symmetry	is	used	in	modern	times: bilateral	symmetry , the	symmetry	of	left
and	right, which	is	so	conspicuous	in	the	structure	of	the	higher	animals, especially
the	human	body. Now	this	bilateral	symmetry	is	a	strictly	geometric	notion	and, in
contrast	to	the	vague	notion	of	symmetry	discussed	before, an	absolutely	precise
concept . . .

“ . . . Symmetry, as	wide	or	as	narrow	as	you	may	define	its	meaning, is	one	idea
by	which	man	[sic]	through	the	ages	has	tried	to	comprehend	and	create	order,
beauty, and	perfection.
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“. . . First	I will	discuss	bilateral	symmetry	in	some	detail . . . Then	we	shall	gener-
alize	this	concept	gradually . . . first	staying	within	the	confines	of	geometry, but
then	going	beyond	these	limits	 through	the	process	of	mathematical	abstraction
along	a	road	that	will	finally	lead	us	to	a	mathematical	 idea	of	great	generality,
the	Platonic	idea	as	it	were	behind	all	the	special	appearances	and	applications	of
symmetry. To	a	certain	degree	this	scheme	is	typical	for	all	theoretic	knowledge:
We	begin	with	some	general	but	vague	principle	(symmetry	in	the	first	sense), then
find	an	important	case	where	we	can	give	that	notion	a	concrete	precise	mean-
ing	(bilateral	symmetry), and	from	that	case	we	gradually	rise	again	to	generality,
guided	more	by	mathematical	construction	and	abstraction	than	by	the	mirages
of	philosophy; and	if	we	are	lucky	we	end	up	with	an	idea	no	less	universal	than
the	one	from	which	we	started. Gone	may	be	much	of	its	emotional	appeal, but	it
has	the	same	or	even	greater	unifying	power	in	the	realm	of	thought	and	is	exact
instead	of	vague.”

That	nicely	sums	up	where	we	are	heading, though	we	will	not	quite	make	it	to	the	fullest
possible	level	of	abstraction, that	requiring	a	greater	degree	of	mathematical	background	than
we	are	assuming	in	this	text. We	will, nonetheless, get	quite	close	to	Weyl’s	vision.
When	the	word	“symmetry”	is	used	colloquially, it	is	most	often	in	reference	to	bilateral	sym-

metry, also	known	as	 left-right	symmetry. The	role	of	bilateral	symmetry	 in	art	and	nature	 is
without	question	quite	large, even	if	symmetry	is	not	very	much	in	favor	in	the	contemporary
art	world. Indeed, so	many	ancient	cultures	used	bilateral	symmetry	in	their	art	and	ornamen-
tation	that	it	is	hard	not	to	wonder	why. Is	it	because	the	human	body	is	essentially	bilaterally
symmetric	(at	least	externally—the	internal	organs	are	not	symmetrically	placed)? Is	it	because
symmetry	has	some	archetypal	symbolism?
Biologically, why	is	the	human	body	externally	bilaterally	symmetric	(and	why	is	it	not	sym-

metric	internally)? A related	issue	is	that	of	left	vs.	right. Is	there	any	inherent	difference	between
the	two	(not	to	mention	superiority	of	one	over	the	other—recall	the	origin	of	the	word	“sinis-
ter”)? Or	are	left	and	right	distinguishable	only	in	that	they	are	opposites	of	one	another? Such
philosophical	questions	are	fascinating, but	a	discussion	of	them	would	take	us	a	bit	far	afield.
Read	the	first	chapter	of	[Wey52]	for	extremely	thoughtful	remarks	on	these	issues.
The	concept	of	bilateral	symmetry	applies	to	planar	objects, that	is, two-dimensional	objects

(for	example, a	drawing)	as	well	as	 to	spatial	objects, that	 is, three	dimensional	objects	 (for
example, a	sculpture). For	the	sake	of	relative	simplicity, we	will	restrict	our	attention	to	planar
objects	(except	in	Section 5.7). Note	the	word	“relative”	in	the	previous	sentence. As	we	will
see, there	are	more	subtleties	to	the	study	of	symmetry—even	of	planar	objects—than	meets	the
eye; planar	objects	are	easier	to	work	with	than	spatial	ones, but	even	they	are	not	trivial.
Though	the	concept	of	bilateral	symmetry	is	a	very	familiar	one, and	most	of	us	would	have	no

trouble	identifying	whether	any	given	object	is	bilaterally	symmetric	or	not, a	precise	definition
of	bilateral	symmetry	takes	some	thought. Imagine	that	an	intelligent	alien	landed	in	your	back
yard, and, because	it	just	happens	to	speak	a	language	that	you	know, you	start	explaining	to
it	all	sorts	of	things	about	our	culture; at	some	point	you	use	the	word	“symmetric”	(referring
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to	something	that	is	bilaterally	symmetric), and	the	alien	asks	you	for	more	details. How	would
you	explain	 it? There	are	a	number	of	ways	you	might	explain	 the	word	“symmetric”	 to	 the
alien	(though	only	one	of	them	will	turn	out	to	be	useful	when	we	consider	symmetry	at	its	most
general).

BEFORE YOU READ FURTHER:

Think	of	 various	ways	 in	which	you	could	explain	what	 it	means	 for	 an	object	 to	be
bilaterally	symmetric.

Consider	the	three	objects	in	Figure 4.1.1; two	of	them	are	bilaterally	symmetric, and	one	is
not	(though	it	has	other	symmetry). Suppose	you	wish	to	explain	to	our	alien	that	the	heart	in
Figure 4.1.1 (i)	has	bilateral	symmetry. First, you	could	say	that	it	looks	the	same	when	reflected
in	a	mirror	 (unlike	 the	writing	on	 this	page, for	example, which	would	be	backwards	when
reflected	in	a	mirror—unless	you	happen	to	be	Leonardo	da	Vinci). Of	course, this	explanation
would	not	help	your	alien	if	it	had	never	seen	a	mirror. Second, you	could	take	the	piece	of
paper	with	the	heart	on	it	and	fold	it	in	half	along	the	vertical	line	through	the	center	of	the	heart,
noticing	that	the	two	halves	are	thus	seen	to	be	the	same. This	approach	seems	satisfactory, and
would	probably	make	things	quite	clear	to	the	alien.

(i)                                  (ii)                                 (iii)  

Figure	4.1.1

A third	explanation	for	the	symmetry	of	the	heart	is	that	if	you	drew	it	on	a	piece	of	very	thin
glass, and	then	flipped	the	glass	over	about	the	vertical	line	through	the	center	of	the	heart, the
drawing	of	the	heart	would	look	the	same	after	the	flip	as	before	it. Considered	another	way,
suppose	you	played	the	following	game	with	someone. You	draw	a	figure	on	a	piece	of	very
thin	glass, and	you	ask	the	other	person	to	close	his	or	her	eyes. You	then	either	flip	the	glass
over	about	the	vertical	line	on	the	piece	of	glass	or	you	do	not. Next, you	ask	the	second	person
to	open	his	or	her	eyes, and	tell	you	whether	or	not	you	flipped	the	glass. If	you	had	drawn
a	non-symmetric	figure	on	the	glass, the	second	person	would	only	have	to	note	whether	the
figure	looked	different	to	see	whether	you	had	flipped	the	glass	or	not. On	the	other	hand, had
you	drawn	a	heart	(or	any	other	bilaterally	symmetric	figure, drawn	so	that	its	line	of	symmetry
is	the	vertical	line	in	which	you	flipped), the	person	could	not	tell	whether	you	had	flipped	the



110 4. Isometries

glass	or	not, because	the	appearance	of	the	heart	does	not	change	as	a	result	of	a	flip	about	the
vertical	line	through	its	center.
This	third	method	of	explaining	the	bilateral	symmetry	of	the	heart	may	seem	the	most	com-

plicated, but	it	 is	the	most	useful	for	our	purposes. We	say	in	general	that	a	planar	object	is
bilaterally	symmetric	if	there	is	a	line	so	that	if	the	plane	is	flipped	about	this	line, the	object
appears	unchanged. (Starting	the	in	next	section, we	will	call	such	a	flip	by	the	more	standard
mathematical	term	“reflection.”) In	Figure 4.1.2 (i)	the	line	used	to	detect	bilateral	symmetry	for
the	heart	is	vertical. As	seen	in	Figure 4.1.2 (ii), the	line	used	to	detect	bilateral	symmetry	of	an
object	need	not	be	vertical. An	object	may	also	be	bilaterally	symmetric	with	respect	to	more
than	one	line, as	in	Figure 4.1.2 (iii), or	even	infinitely	may	such	lines, as	is	the	case	of	the	circle
(Figure 4.1.2 (iv)).

(i)                                  (ii)                                   (iii)                               (iv)

Figure	4.1.2

There	are	other	types	of	symmetry	than	just	bilateral	symmetry. With	hindsight, mathemati-
cians	came	to	understand	that	the	common	feature	of	all	types	of	symmetry	is	that	they	can	be
detected	through	certain	types	of	“motions	of	the	plane,” of	which	flipping	is	one	special	case.
Another	example	of	the	type	of	“motions	of	the	plane”	useful	to	the	study	of	symmetry	is	rota-
tion. Not	all	“motion	of	the	plane”	are	useful, however. For	example, stretching	or	tearing	the
plane, while	interesting	in	other	contexts, is	not	of	use	in	the	study	of	symmetry. In	Chapter 5
we	will	have	a	detailed	discussion	of	the	symmetry	of	various	categories	of	planar	objects. In
this	chapter	we	lay	the	groundwork	for	Chapter 5 by	giving	a	detailed	discussion	of	the	relevant
types	of	“motions	of	the	plane.”

4.2 Isometries	–	The	Basics

In	the	previous	section	we	saw	that	one	way	to	detect	the	bilateral	symmetry	of	a	planar	object
is	by	flipping	the	object	in	a	line, and	seeing	whether	the	object	appears	unchanged. Flipping
the	plane	in	a	line	is	one	example	of	a	certain	type	of	“motion	of	the	plane”	that	is	crucial	in	the
study	of	symmetry. Two	other	examples	of	“motions	of	the	plane”	would	be	rotating	the	plane
90◦ clockwise	about	some	point, and	shifting	the	entire	plane 5 inches	to	the	right. More	messy
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transformations	such	as	squashing	the	plane	down	to	a	single	point, stretching	the	plane, etc.,
can	also	be	imagined.
It	is	very	important	to	note, however, that	we	are	interested	only	in	the	net	effect	of	a	“motion,”

not	“how	it	gets	there.” For	example, rotation	by 90◦ clockwise	about	some	point	has	the	same
net	effect	as	rotation	by 270◦ counterclockwise	about	the	same	point, and	we	consider	these
two	rotations	to	be	the	same	“motion.” Similarly, shifting	the	plane 10 inches	to	the	right	has
the	same	net	effect	as	first	shifting	the	plane 15 inches	to	the	right, and	then	shifting	it 5 inches
to	the	left.
The	word	“motion	of	 the	plane”	 is	actually	an	unfortunate	 term, in	 that	 its	use	might	give

the	false	impression	that	we	are	interested	in	how	we	do	the	“motion,” rather	than	just	the	net
effect. Hence, we	will	not	use	the	informal	term	“motion	of	the	plane”	any	more, and	instead	will
adhere	to	the	more	standard	mathematical	term transformation of	the	plane. By	a	transformation
of	the	plane, we	mean	a	rule	of	assignment	that	takes	each	point	in	the	plane, and	assigns	it
some	point	where	it	will	end	up. For	example, shifting	the	plane 10 inches	to	the	right	takes
each	point	in	the	plane	and	assigns	it	a	new	location, namely 10 inches	to	the	right	of	its	initial
position; first	shifting	the	plane 15 inches	to	the	right, and	then	shifting	it 5 inches	to	the	left,
again	takes	each	point	in	the	plane	and	assigns	it	a	new	location	that	is 10 inches	to	the	right	of
its	initial	position. Although	we	as	human	beings	might	think	of	shifting	the	plane 10 inches	to
the	right	as	a	different process than	first	shifting	the	plane 15 inches	to	the	right	and	then	shifting
it 5 inches	to	the	left, from	the	point	of	view	of	transformations, the	process	is	irrelevant, and
only	the	assignment	of	points	to	their	final	locations	is	of	interest	in	the	study	of	symmetry. We
denote	transformations	with	the	same	type	of	notation	as	used	for	functions. That	is, suppose
T is	a	transformation	of	the	plane. Then, for	each	point A in	the	plane, we	let T(A) denote
the	result	of	applying	the	transformation	to A. For	example, suppose T is	the	transformation
obtained	by	shifting	the	plane 10 inches	to	the	right. IfA is	a	point	in	the	plane, then T(A) will
be	the	point	that	is 10 inches	to	the	right	of A. Note	that T moves	every	point	in	the	plane 10
inches	to	the	right, not	just	some	of	the	points.
To	help	avoid	further	confusion	over	the	term	“transformation	of	the	plane,” we	summarize

two	important	points	as	follows:

1. A transformation	of	the	plane	takes	each	point	in	the	plane, and	assigns	it	to	a	point	where
it	ends	up. What	counts	is	the	net	effect	of	the	transformation, that	is, where	each	point
ends	up	in	relation	to	its	initial	position. We	might	think	geometrically	of	transformations
as	processes, but	that	process	is	just	for	our	personal	intuitive	benefit, and	has	no	mathe-
matical	significance. Two	transformations	are	the	same	if	they	have	the	same	net	effects,
even	if	they	seem	different	as	processes.

2. A transformation	of	plane	transforms	the	whole	plane, not	just	some	part	of	the	plane. Even
when	we	will	be	looking	at	symmetries	of	specific	objects, and	applying	transformations
of	the	plane	to	them, we	always	need	to	think	of	each	transformation	as	being	applied	to
the	whole	plane.
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Forgetting	the	above	two	points	is	a	common	mistake	among	students	first	learning	about	sym-
metry, and	often	leads	to	a	lot	of	confusion. So, please	keep	these	two	points	in	mind.
We	are	not	interested	in	all	transformations	of	the	plane, but	only	those	relevant	to	the	study	of

symmetry. If	we	think	of	flipping	the	plane	about	a	line, or	rotating	the	plane	about	some	point,
we	see	that	both	of	these	transformations	have	the	nice	property	that	they	do	not	stretch, shrink
or	distort	 anything. Both	of	 these	 transformations	preserve	 lengths, angles, sizes	and	 shapes
precisely. It	is	this	property	of	non-distortion	that	is	crucial	to	the	study	of	symmetry. Recall	from
Section 1.3 that	the	concept	of	distance	between	points	can	be	used	to	describe	objects	such	as
lines	and	circles, and	can	be	used	to	determine	angles. Hence, it	should	not	be	surprising	that
preserving	distances	between	points	is	the	key	to	describing	those	transformations	of	the	plane
that	do	not	stretch, shrink	or	distort. More	precisely, we	say	that	a	transformation	of	the	plane	is
an isometry if, for	any	two	pointsA and B in	the	plane, their	distance	before	the	transformation
equals	their	distance	after	the	transformation. Using	our	notation	for	distance	between	points
from	Section 1.3, we	say	 that	a	 transformation T of	 the	plane	 is	an	 isometry	 if, for	any	 two
points A and B in	the	plane, we	have d(T(A), T(B)) = d(A,B); equivalently, we	can	say
that |T(A) T(B)| = |AB|. (Some	texts	use	the	term	“rigid	motion” to	mean	what	we	call	an
isometry, though	we	will	not	use	that	term.)
It	is	also	possible	to	define	the	notion	of	isometry	for	three	dimensional	(and	higher)	space,

though	we	will	be	sticking	to	isometries	of	the	plane	(except	in	Section 5.7); the	word	“isom-
etry”	will	therefore	always	refer	to	an	isometry	of	the	plane, except	where	otherwise	noted. A
completely	thorough	and	rigorous	treatment	of	isometries	would	be	very	lengthy. In	this	chapter
we	will	discuss	some	of	the	basic	ideas	involving	isometries, as	much	as	is	needed	for	our	study
of	symmetry. Isometries	are, without	question, the	fundamental—and	unifying—concept	in	the
mathematical	study	of	symmetry, and	our	time	looking	at	isometries	will	be	well	spent.
There	are	many	things	to	be	said	about	isometries, but	the	most	basic	questions	is: can	we

figure	out	all	the	types	of	transformations	of	the	plane	that	are	isometries? The	complete	answer
to	this	question	will	be	given	in	Section 4.6. In	the	meantime, we	can	describe	in	detail	three
familiar	types	of	isometries.
The	simplest	type	of	isometry	is	called translation. A translation	is	the	result	of	“sliding”	the

plane	rigidly	in	a	given	direction, and	by	a	given	distance. In	Figure 4.2.1 we	see	the	effect	of
translating	the	plane 3 inches	to	the	right. In	this	figure, as	in	many	other	figures	to	come, in
order	to	see	the	effect	of	the	isometry, we	draw	something	on	the	plane, to	be	able	to	compare
its	initial	position	with	its	final	position. The	plane	itself	is	blank, and	if	we	do	not	draw	anything
on	it, we	cannot	see	any	difference	of	how	the	plane	looks	before	and	after	an	isometry. Imagine
the	plane	as	an	infinite, very	thin, perfectly	smooth, sheet	of	glass—if	the	sheet	of	glass	is	moved,
it	does	not	look	any	different. Instead, we	take	two	sheets	of	glass, one	on	top	of	the	other. Then,
we	draw	the	same non-symmetric object	on	both	sheets	of	glass, directly	on	top	of	each	other.
We	will	typically	draw	the	letter F, because	it	is	simple, though	any	non-symmetric	object	would
do. (We	use	the	term	“non-symmetric”	intuitively	right	now; we	will	discuss	the	term	in	more
detail	in	Section 5.1.) We	then	perform	the	isometry	on	one	of	the	sheets	of	glass. Comparing	the
unmoved	copy	of	the	object	(called	the initial	object) with	the	moved	one	(called	the terminal



4.2	Isometries	–	The	Basics 113

object), we	can	obtain	a	picture	of	the	effect	of	the	isometry. In	Figure 4.2.1 we	see	labeled	the
initial F and	the	terminal F, illustrating	translation	by 3 inches	to	the	right. We	stress, however,
that	it	is	the	whole	plane	that	is	being	translated, not	just	the	letter F.

F
initial

F
terminal

Figure	4.2.1

A translation	of	the	plane	can	be	in	any	direction, and	by	any	amount. One	useful	way	to
describe	a	translation	is	as	follows. In	Figure 4.2.2 we	see	the	result	of	translating	the	plane. In
this	figure, rather	than	drawing	an	initial	object	such	as	the	letter F, we	simply	drew	one	point,
labeled A; the	point A was	taken	to	a	new	point, labeled A ′, by	the	translation. To	see	how
the	plane	was	translated, we	drew	an	arrow	from A to A ′. The	arrow	is	labeled v. This	arrow
completely	characterizes	the	translation, in	the	following	sense. Suppose	we	had	started	with
some	other	point	 in	the	plane, say B, instead	of A; let B ′ denote	the	point	 to	which B was
moved	by	the	translation. It	would	turn	out	that	drawing	an	arrow	from B to B ′ would	yield	an
arrow	that	is	parallel	to	the	arrow	from A to A ′. For	our	purposes	here, two	parallel	arrows	of
the	same	length	are	considered	identical. Such	arrows, where	we	consider	parallel	arrows	of	the
same	length	to	be	identical, are	called vectors. Any	translation	corresponds	to	a	vector, called
its translation	vector obtained	as	just	described, and	any	vector	determines	a	translation. Given
a	vector v, we	denote	by Tv the	translation	corresponding	to	the	vector v; that	is, the	translation
obtained	by	taking	every	point	in	the	plane, and	moving	it	by	the	amount	and	direction	of	the
vector v. If A is	any	point	in	the	plane, then Tv(A) is	the	result	of	taking A, and	moving	it	in
the	length	and	direction	of v.

A

A’v

Figure	4.2.2

A particularly	noteworthy	translation	is	translation	by	zero	length	(it	does	not	matter	which
direction), called	the trivial	translation. The	trivial	translation	does	not	“move	anything,” though
it	is	still	a	transformation	of	the	plane, and, in	particular, an	isometry. Recall	that	a	transformation
of	the	plane	is	a	rule	of	assignment	that	takes	each	point	in	the	plane, and	assigns	it	some	point
where	it	will	end	up. In	the	case	of	the	trivial	translation, the	transformation	takes	each	point
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in	the	plane, and	assigns	it	the	final	location	exactly	where	it	started. This	isometry	that	“does
not	do	anything”	is	extremely	important	(just	as	the	number	zero	is	important	in	the	study	of
numbers). Another	name	for	the	trivial	translation	is	the identity	isometry, and	it	is	denoted I.
If A is	any	point	in	the	plane, then I(A) = A. A translation	that	is	not	the	trivial	translation	is
called	a non-trivial translation.
Another	familiar	type	of	isometry	is	called rotation. In	Figure 4.2.3 we	see	the	effect	of	rotating

the	plane 90◦ clockwise	about	the	point A; as	usual, in	order	to	see	the	effect	of	this	isometry,
we	drew	a	letter F on	the	plane, and	we	then	see	where	this	letter F ends	up. We	stress, once
again, that	it	is	the	whole	plane	that	is	being	rotated, not	just	the	letter F.

F
initial Fterminal

A

Figure	4.2.3

Any	rotation	is	characterized	by	knowing	two	things, namely	the	point	about	which	we	rotate,
called	the center	of	rotation, and	the	angle	by	which	we	rotate. When	we	rotate	the	plane	about
a	point, we	can	think	of	our	rotations	as	either	clockwise	or	counterclockwise. Because	we	are
only	 interested	 in	 the	net	 effect	of	 a	 rotation, not	 the	process	of	 rotation, it	 really	does	not
matter	whether	we	use	clockwise	or	counterclockwise	rotations. For	example, rotation	by 90◦

clockwise	about	some	point	has	the	same	net	effect	as	rotation	by 270◦ counterclockwise	about
the	same	point, and	so	we	consider	 these	 two	rotations	 to	be	 the	same	 isometry. Moreover,
both	of	these	rotations	have	the	same	net	effect	as	rotation	by 450◦ clockwise. In	order	to	avoid
redundancy, we	will	usually	make	use	of	 clockwise	 rotations; all	 rotations	will	be	assumed
clockwise, unless	otherwise	indicated. (Some	texts	use	counterclockwise	rotations, and	so	in
any	text	you	read, it	is	important	to	make	sure	which	direction	of	rotation	is	being	used.)
The	notation	for	the	rotation	by	angle α clockwise	with	center	of	rotation A is	denoted RA

α ;
if	it	is	not	important	to	denote	the	center	of	rotation, we	sometimes	write Rα. For	example, the
rotation	shown	in	Figure 4.2.3 can	be	written	as RA

90◦ . If	we	want	to	specify	a	counterclockwise
rotation, we	will	use	negative	angles. For	example, the	rotation	shown	in	Figure 4.2.3 could	also
be	written	as RA

−270◦ . Instead	of	using	degrees	to	describe	angles, we	often	describe	rotation	in
terms	of	fractions	of	a	whole 360◦ rotation. For	example, a	rotation	by 90◦ is	the	same	as 1/4
of	a	whole 360◦ rotation. Hence, we	can	also	write	the	rotation	shown	in	Figure 4.2.3 as RA

1/4.
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In	general, we	use	the	notation RA
1/n, where n is	a	whole	number, to	mean	a	clockwise	rotation

by 360◦/n, that	 is, a	 rotation	by 1/n of	a	whole 360◦ turn. We	commonly	call	 rotation	by
180◦ a halfturn	rotation (or	just halfturn). Rotation	by	angle 0◦, or	equivalently	by	any	whole
number	multiple	of 360◦, is	referred	to	as	the trivial	rotation, and	it	 is	 the	same	isometry	as
the	identity	isometry I mentioned	previously. Note	that 0◦ is	a	multiple	of 360◦, because 0◦ =
0·360◦, so	we	can	simply	state	that	a	trivial	rotation	is	one	where	the	angle	is	a	multiple	of 360◦,
where	“multiple”	in	this	context	will	always	mean	by	a	whole	number. (It	may	seem	strange,
but	translation	by	zero	is	indeed	the	same	isometry	as	rotation	by	zero.) A rotation	that	is	not
the	trivial	rotation	is	called	a non-trivial rotation.

Exercise 4.2.1. Draw	the	effect	on	the	letter R shown	in	Figure 4.2.4 as	the	result	of	rotating
the	plane	by 60◦ clockwise	about	each	of	the	points	shown. (There	will	be	four	answers,
one	for	each	point.)

B
D

C

A R

Figure	4.2.4

There	is	a	very	interesting	difference	between	translations	and	rotations. When	we	translate
the	plane	by	any	amount	other	than	zero, no	point	ends	up	where	it	started. By	contrast, when
we	rotate	by	any	angle	other	than	a	multiple	of 360◦, there	is	always	one	(and	only	one)	point
that	does	end	up	where	it	started, namely	the	center	of	rotation. A point	that	ends	up	where	it
started	after	we	do	an	isometry	of	the	plane	is	called	a fixed	point of	the	isometry. If R is	an
isometry, and	if X is	a	point	in	the	plane, then X is	a	fixed	point	of R precisely	if R(X) = X.
Using	this	terminology, we	see	that	a	non-trivial	translation	has	no	fixed	points; that	a	non-trivial
rotation	has	one	fixed	point; and	that	the	identity	isometry	has	every	point	as	a	fixed	point.
Although	a	non-trivial	 translation	has	no	fixed	points, observe	that	any	line	that	 is	parallel

to	the	direction	of	translation	is	taken	to	itself	by	the	translation. For	example, if	the	plane	is
translated 5 inches	to	the	right, then	any	horizontal	line	is	taken	onto	itself	by	the	translation;
each	non-horizontal	line	is	not	taken	onto	itself	by	this	translation. A line	that	is	taken	onto	itself
by	an	isometry	of	the	plane	is	called	a fixed	line of	the	isometry. A fixed	line	is	a	line	that	is
taken	onto	itself; the	individual	points	of	the	fixed	line	need	not	each	be	taken	onto	themselves.
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The	identity	isometry	has	every	line	in	the	plane	as	a	fixed	line. Do	non-trivial	rotations	have
fixed	lines? The	answer	depends	upon	the	angle	of	rotation. A rotation	by 180◦ (or	any	multiple
of 180◦)	takes	every	line	containing	the	center	of	rotation	onto	itself, so	all	these	lines	are	fixed
lines	of	the	rotation; lines	that	do	not	contain	the	center	of	rotation	are	not	fixed. On	the	other
hand, a	rotation	that	is	not	by	a	multiple	of 180◦ has	no	fixed	lines.
The	third	type	of	isometry	we	wish	to	examine	is	called reflection. Reflection	is	the	mathemat-

ical	term	for	flipping	the	plane	in	a	line. In	Figure 4.2.5 we	see	the	effect	of	flipping	the	plane
in	the	line	labeled n; as	usual, we	drew	a	letter F on	the	plane	as	an	initial	object, and	we	then
see	where	this F ends	up	as	a	result	of	the	reflection. We	stress, as	always, that	it	is	the	whole
plane	that	is	being	reflected, not	just	the	letter F.

initial

terminal
F

Fn

Figure	4.2.5

A reflection	is	characterized	by	the	line	in	which	the	plane	is	flipped, called	the line	of	reflec-
tion (also	known	as	the line	of	symmetry or mirror	line). The	notation	for	a	reflection	in	line n
isMn; if	we	have	a	number	of	lines, for	example L1, . . . , Ls, then	we	will	write	the	reflections
in	these	lines	as M1, . . . ,Ms when	the	meaning	is	clear.
Although	we	think	of	reflection	in	a	line	as	flipping	the	plane	about	that	line, there	is	another

way	of	thinking	about	reflection	that	captures	the	idea	better	(especially	if	we	want	to	compare
reflection	of	the	plane	in	a	line	with	reflection	of	three	dimensional	space	in	a	plane—which
is	reflection	in	a	mirror). Recall	that	what	counts	in	an	isometry	is	only	its	net	effect, that	is,
where	each	point	of	the	plane	ends	up	in	relation	to	its	initial	position, and	not	the	geometric
process	used	to	visualize	the	isometry	(for	example, flipping	the	plane	in	the	case	of	reflection).
Let	us	look	at	Figure 4.2.5. Pick	some	point	in	the	initial F, and	then	find	its	corresponding	point
in	the	terminal F; for	example, we	will	pick	the	point	at	the	very	bottom	right	of	the	initial F.
What	is	the	relation	of	this	point	in	the	initial F and	the	corresponding	point	in	the	terminal F?
In	Figure 4.2.6 we	label	the	chosen	point	on	the	initial F by A, and	its	corresponding	point	on
the	terminal F by A ′. We	can	then	draw	the	line	segment AA ′, as	shown	in	the	figure. The
crucial	observation	is	that AA ′ is	perpendicular	to	the	line	of	reflectionm, and	that	the	points
A and A ′ are	each	the	same	distance	from	the	line m, though	on	opposite	sides	of	it. That	is,
if	we	label	the	point	of	intersection	of AA ′ and m by O, then	the	lengths	of AO and A ′ O
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are	equal. What	we	have	said	about	the	point A also	holds	for	any	other	point	in	the	initial
F. Therefore, given	the	line m and	the	initial F, instead	of	obtaining	the	terminal F by	flipping
the	plane	about m, we	could	have	found	the	terminal F by	taking	each	point	in	the	initial F,
drawing	a	perpendicular	line	to m from	the	point, and	then	locating	the	corresponding	point
on	the	terminal F by	continuing	the	perpendicular	pastm the	same	distance	we	went	from	the
starting	point	to m. By	doing	this	process	to	sufficiently	many	points	on	the	initial F (or	any
other	initial	object), we	could	construct	the	terminal	object. This	method	also	holds	in	three
dimensional	space. When	you	look	at	yourself	in	the	mirror, your	image	is	as	far	behind	the
mirror	as	you	are	in	front	of	it.

initial

terminal
F

Fm

A

A’

O

Figure	4.2.6

Exercise 4.2.2. Draw	the	effect	on	the	letter R shown	in	Figure 4.2.7 as	the	result	of	re-
flecting	the	plane	in	each	of	the	lines	shown. (There	will	be	three	answers, one	for	each
line.)

To	compare	reflections	with	translations	and	rotations, recall	the	notion	of	fixed	points. In	a
reflection, every	point	on	the	line	of	reflection	is	fixed, but	no	other	point	 is	fixed. This	 fact
contrasts	with	non-trivial	 translations, which	have	no	fixed	points, and	non-trivial	 rotations,
which	have	one	fixed	point	each. The	identity	isometry	has	all	points	fixed. Observe	that	unlike
translations	and	rotations, which	can	be	trivial	or	not	(that	is, there	are	translations	and	rotations
that	equal	the	identity	isometry), there	is	no	trivial	reflection; that	is, no	reflection	can	equal	the
identity	isometry.

Exercise 4.2.3. Suppose m is	a	line	in	the	plane. Describe	all	fixed	lines of	the	reflection
Mm.
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Figure	4.2.7

Exercise 4.2.4. [Used	in	Sections 4.5, 4.3 and	4.6, and	Appendix	A] Suppose	that A and
B are	distinct	points	in	the	plane. Let m be	the	perpendicular	bisector	of AB.

(1) Show	that Mm takes A to B and	takes B to A, and	that Mm is	the	only	reflection
of	the	plane	to	do	so.

(2) Show	that Mm fixes	any	point	that	is	equidistant	to A and B.

There	is	another	important	distinction	between	the	translations	and	rotations	on	the	one	hand,
and	reflections	on	the	other	hand. In	Figure 4.2.1 we	see	the	effect	of	a	translation	on	the	letter
F; in	Figure 4.2.3 we	see	the	effect	of	a	rotation	on	the	letter F. Certainly, in	Figure 4.2.1 the
terminal F still	looks	just	like	a	letter F. In	Figure 4.2.3 the	terminal F does	not	look	precisely
like	the	letter F usually	does, but	if	you	turn	your	head	(or	the	page)	just	the	right	amount, the
terminal F does	look	like	a	standard	letter F. By	contrast, in	Figure 4.2.5, which	shows	the	effect
of	a	reflection	on	the	letter F, no	matter	how	you	turn	your	head, the	terminal F does	not	look
right. The	reflection	“reverses”	the	letter F (and	any	other	initial	object), and	thus	it	does	not
look	like	a	standard	letter F. The	terminal F looks	 like	 the	mirror	 image	of	 the	 initial F. The
formal	terminology	we	use	is	that	translations	and	rotations	are orientation	preserving, whereas
reflections	are orientation	reversing.
We	have	so	far	discussed	three	particular	types	of	isometries: translations, rotations	and	re-

flections. Are	there	any	other	types	of	isometries, or	do	these	three	types	include	all	isometries?
Intuitively, it	is	hard	to	imagine	any	other	type	of	isometry, but	that	is	not	a	rigorous	argument
that	would	demonstrate	that	the	three	types	of	isometries	are	the	only	types	that	exist. To	obtain
a	better	feel	for	this	question, we	need	to	look	at	isometries	from	a	slightly	different	point	of
view, as	discussed	in	Section 4.3.
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4.3 Recognizing	Isometries

In	Section 4.2, we	discussed	isometries	as	transformations	of	the	plane. To	see	what	effect	a
particular	isometry	has, we	would	draw	an	object	in	the	plane, such	as	the	letter F, and	see
what	happened	to	the	object	as	a	result	of	the	isometry	by	comparing	the	initial	object	with	the
terminal	object. We	now	want	to	take	a	“backwards”	look	at	isometries. Suppose	two	people
were	to	play	the	following	game. One	person	draws	a	letter F on	a	blackboard, to	be	used	as	an
initial	object. The	second	person	then	closes	her	eyes. The	first	person	chooses	some	particular
isometry, performs	the	isometry, and	draws	the	terminal F on	the	board	that	results	from	applying
the	isometry. The	first	person	then	erases	everything	on	the	board	other	than	the	initial F and
the	terminal F. The	second	person	now	opens	her	eyes, and	looks	at	the	two	letters F on	the
board. Can	the	second	person	figure	out	what	isometry	the	first	person	used? In	other	words,
instead	of	taking	an	isometry	and	seeing	what	its	effect	is, the	second	person	sees	the	effect	of
the	isometry, and	tries	to	figure	out	what	the	isometry	is.
It	will	turn	out	that	the	second	person	can	always	figure	out	what	isometry	the	first	person

used; how	the	second	person	does	so	is	the	subject	of	the	present	section, though	the	complete
answer	will	be	given	only	in	Section 4.5. There	is, however, one	caveat. Suppose	the	first	person
does	the	following. First, she	translates	the	plane 15 inches	to	the	right. Then, before	the	second
person	opens	her	eyes, she	translates	the	plane 5 inches	to	the	left, and	draws	the	terminal F
after	doing	both	translations. The	net	effect	will	be	that	the	terminal F lies	exactly 10 inches	to
the	right	of	the	initial F. The	first	person	then	erases	everything	on	the	blackboard	other	than
the	initial	and	terminal	letters F. When	the	second	person	opens	her	eyes	and	tries	to	figure	out
what	isometry	was	used, she	would	most	likely	think	that	the	isometry	used	was	translation	of
the	plane	by 10 inches	to	the	right. There	is	no	way	that	the	second	person	could	guess	that	the
first	person	started	by	translating	the	plane 15 inches	to	the	right, and	then	translating	the	plane
5 inches	to	the	left. The	only	thing	that	the	second	person	can	figure	out	is	the	net	effect	of	what
the	first	person	did, not	the	particular	process. However, as	mentioned	in	Section 4.2, it	is	only
net	effect	that	is	of	interest	in	our	discussion	of	isometries.
Let	us	now	 rephrase	our	question. Suppose	we	have	 two	 identical	 letters F on	 the	plane,

one	labeled	as	the	initial	object, and	one	labeled	as	the	terminal	object. Can	we	find	a	single
isometry	of	the	plane	that	would	have	the	effect	of	taking	the	initial F to	the	terminal F? (It	might
well	be	asked	whether	we	can	find	more	than	one	answer, but	it	will	turn	out	that	there	is	never
more	than	one; this	fact	is	proved	rigorously	in	Appendix A,	but	we	will	not	go	into	the	details
here.)
Let	us	start	by	looking	at	some	particular	cases. First, consider	the	initial	and	terminal	letters

F shown	in	Figure 4.3.1.

Here	 it	 seems	 fairly	clear	 that	we	can	find	a	single	 isometry	of	 the	plane	 that	would	have
the	effect	of	 taking	 the	 initial F to	 the	 terminal F, namely	a	 translation. To	figure	out	which
translation, label	some	point	on	the	initial F by	the	letter A; then	label	the	exact	corresponding
point	on	the	terminal F by	the	letterA ′. In	Figure 4.3.2 we	have	taken	the	left-most	point	on	the
bottom	of	each	letter F as	the	point	being	labeled. We	can	then	take v to	be	the	vector	from A
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F
initial F

terminal

Figure	4.3.1

to A ′. The	translation Tv is	the	isometry	we	are	looking	for; that	is, it	has	the	effect	of	taking	the
initial F to	the	terminal F. Observe	that	it	would	not	have	made	any	difference	had	we	chosen
a	different	point A in	the	initial F, as	long	as A ′ is	the	point	in	the	terminal F that	corresponds
to	our	choice	of A.

F
initial

A’

A

v
F
terminal

Figure	4.3.2

Next, consider	the	initial	and	terminal	letters F shown	in	Figure 4.3.3. Is	there	a	single	isometry
that	would	have	the	effect	of	taking	the	initial F to	the	terminal F?

F Finitial terminal

Figure	4.3.3

Let	us	consider	the	three	types	of	symmetries	with	which	we	are	familiar, namely	translations,
rotations	and	reflections. A translation	could	not	possibly	take	the	initial F to	 the	terminal F
in	Figure 4.3.3, because	the	latter	is	at	an	angle	with	the	former. A reflection	also	could	not
possibly	take	the	initial F to	the	terminal F, because	a	reflection	is	orientation	reversing, and
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yet	the	terminal F is	not	reversed. Hence, the	only	type	of	isometry	with	which	we	are	familiar
that	could	possibly	work	is	a	rotation. It	turns	out	that	a	rotation	does	indeed	work. To	find	the
rotation	that	works, we	need	to	find	its	center	of	rotation	and	angle	of	rotation.
We	start	by	finding	the	center	of	rotation. As	was	the	case	in	the	previous	example, we	proceed

by	labeling	some	point	on	the	initial F by	the	letter A, and	labeling	the	corresponding	point	on
the	terminal F by	the	letterA ′. Wherever	the	center	of	rotation	we	are	seeking	is	located, it	must
be	equidistant	to	the	two	points A and A ′; that	is, if	a	point X in	the	plane	is	the	sought	after
center	of	rotation, then d(X,A) = d(X,A ′). We	now	make	use	of	Proposition 1.3.1, which
says	that	a	point X in	the	plane	has d(X,A) = d(X,A ′) if	and	only	if	it	is	on	the	perpendicular
bisector	of AA ′. Hence, we	can	narrow	our	search	for	the	center	of	rotation	to	those	points	on
the	perpendicular	bisector	ofAA ′. See	Figure 4.3.4. How	do	we	know	which	point	on	this	line
is	the	center	of	rotation? The	trick	is	to	repeat	our	procedure	with	another	pair	of	corresponding
points, say B and B ′. The	center	of	rotation	is	also	on	the	perpendicular	bisector	of BB ′. These
two	perpendicular	bisectors	are	shown	in	Figure 4.3.5. Notice	that	these	two	lines	intersect	in
precisely	one	point. Because	the	center	of	rotation	must	be	on	the	two	perpendicular	bisectors,
it	must	be	precisely	the	point	where	the	two	perpendicular	bisectors	intersect. We	have	therefore
found	the	center	of	rotation. It	turns	out	that	it	does	not	matter	which	pointsA and B we	choose
on	 the	 initial F; we	will	always	obtain	 the	same	center	of	 rotation, labeled O in	 the	figure.
Finally, to	find	the	angle	of	rotation, just	measure	the	angle	between	from	the	line	segmentOA

to	the	line	segment OA ′; it	would	work	just	as	well	to	use OB and OB ′. All	told, we	have
now	determined	the	rotation	that	takes	the	initial F to	the	terminal F.

FF
initial terminal

A
A’

Figure	4.3.4

As	our	third	example, consider	the	initial	and	terminal	letters F shown	in	Figure 4.3.6. Once
again	we	ask	whether	there	is	a	single	isometry	that	would	have	the	effect	of	taking	the	initial F
to	the	terminal F.
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In	this	case, we	see	that	the	terminal F has	reversed	orientation	when	compared	to	the	initial
F. Hence, the	only	type	of	isometry	with	which	we	are	familiar	that	could	possibly	work	is	a
reflection. It	turns	out	that	a	reflection	does	indeed	work. How	do	we	find	the	line	of	reflection?
As	before, we	start	by	 labeling	some	point	on	 the	 initial F by	 the	 letter A, and	 labeling	 the
corresponding	point	on	the	terminal F by	the	letter A ′. Using	Exercise 4.2.4 (1), we	know	that
the	line	of	reflection, if	there	is	one, must	be	the	perpendicular	bisector	ofAA ′. See	Figure 4.3.7.
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If	any	other	pair	of	corresponding	points	on	the	initial F and	terminal F is	chosen, say B and B ′,
then	the	perpendicular	bisector	of BB ′ is	seen	(in	the	case	of	Figure 4.3.6)	to	be	the	same	line
as	the	perpendicular	bisector	of AA ′. We	have	therefore	found	the	desired	line	of	reflection.
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Figure	4.3.7

Exercise 4.3.1. In	each	of	the	three	parts	of	Figure 4.3.8 are	shown	initial	and	terminal
letters F, obtained	by	using	an	 isometry. For	each	of	 the	 three	cases, state	what	 type	of
isometry	was	used. Moreover, if	the	isometry	is	a	rotation, indicate	its	center	of	rotation;
if	 the	 isometry	 is	a	 translation, indicate	 the	 translation	by	an	arrow; if	 the	 isometry	 is	a
reflection, indicate	the	line	of	reflection.

As	our	final	example, consider	the	initial	and	terminal	letters F shown	in	Figure 4.3.9. Is	there
a	single	isometry	that	would	have	the	effect	of	taking	the	initial F to	the	terminal F?

As	in	the	previous	example, we	see	that	the	terminal F has	reversed	orientation	when	com-
pared	to	the	initial F. Hence, no	translation	or	rotation	could	work. A reflection	might	seem
like	a	good	bet, but	that	too	does	not	work. In	Figure 4.3.10 we	see	two	pairs	of	corresponding
points	on	the	initial F and	terminal F, labeledA andA ′, and B and B ′. We	see	in	this	case	that
the	perpendicular	bisector	of AA ′ is	not	the	same	line	as	the	perpendicular	bisector	of BB ′. If
a	reflection	took	the	initial F to	the	terminal F, then	it	would	need	to	have	both	perpendicular
bisectors	as	its	line	of	reflection, which	makes	no	sense. Hence, there	is	no	reflection	that	takes
the	initial F to	the	terminal F.

What	can	we	say	as	a	result	of	this	last	example? We	would	have	to	draw	one	of	two	pos-
sible	conclusions: either	that	two	identical	copies	of	the	letter F can	be	drawn	in	the	plane	in
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(iii)

(i)                                                                                         (ii)
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such	a	way	 that	no	 isometry	of	 the	plane	 takes	one	 to	 the	other, or, alternatively, that	 there
are	isometries	other	than	the	three	types	we	have	discussed	so	far	(translations, rotations	and
reflections). Which	of	these	possibilities	is	the	correct	one? We	will	see	the	answer	to	this	ques-
tion	in	Section 4.5. First, however, we	will	need	a	very	important	tool, which	is	described	in
Section 4.4.
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4.4 Combining	Isometries

Just	as	numbers	become	truly	useful	only	when	we	can	add, subtract, multiply	and	divide	them,
the	transformations	of	the	plane	discussed	above	become	much	more	interesting	when	we	see
how	to	combine	them. If	we	think	of	a	transformation	of	the	plane	as	a	way	of	moving	the	points
in	the	plane, then	if	we	are	given	two	transformations, we	can	combine	them	by	first	doing	one
and	then	doing	the	second. Suppose P and Q are	transformations	of	the	plane; we	let Q ◦ P

denote	the	combined	transformation	obtained	by	first	doing P and	then	doing Q. We	refer	to
Q ◦ P as	the composition of P and Q. (The	notation Q ◦ P may	seem	“backwards”	at	first
glance, in	that	it	means	doing P first	rather	thanQ first, but	this	notation	is	very	standard	in	the
mathematical	literature, and	is	also	quite	convenient	in	some	situations, so	we	will	stick	with
it.) The	phrases	“P followed	by Q”	and	“Q following P”	mean	the	same	thing	as Q ◦ P. One
way	of	obtaining	a	feel	for	the	notation Q ◦ P is	by	looking	at	what Q ◦ P does	to	a	point
A in	the	plane. The	result	of	applying	the	isometry Q ◦ P to	the	point A would	be	denoted
(Q ◦ P)(A). However, we	know	that	the	point (Q ◦ P)(A) is	obtained	by	first	doing P to A,
resulting	in	the	point P(A), and	then	doing Q to	that, resulting	in	the	point Q(P(A)). Hence,
we	see	that (Q ◦ P)(A) = Q(P(A)).
Before	we	look	at	examples	of	compositions	of	isometries, we	need	to	ask	the	following	ques-

tion: the	composition	of	two	isometries	is	a	transformation	of	the	plane; is	it	also	an	isometry?
Fortunately, the	answer	is	yes. Intuitively, this	assertion	seems	reasonable, because	doing	each
of	two	isometries	individually	does	not	change	distances	between	points	in	the	plane, so	doing
them	consecutively	should	not	change	distances	between	points. Using	our	notation	for	distance
between	points	from	Section 1.3, we	can	write	out	our	demonstration	formally	as	follows.

Proposition 4.4.1. Suppose	that P and Q are	isometries. Then Q ◦ P is	an	isometry.

Demonstration. Suppose	that A and B are	points	in	the	plane. We	need	to	show	that	their	dis-
tance	before	the	transformationQ ◦ P equals	their	distance	after	the	transformation. Because P
is	an	isometry, we	know	that d(P(A), P(B)) = d(A,B). Because Q is	an	isometry, we	know
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that d(Q(P(A)), Q(P(B))) = d(P(A), P(B)). It	then	follows	that d(Q(P(A)), Q(P(B))) =
d(A,B). However, we	 know	 that Q(P(A)) can	 be	 rewritten	 as (Q ◦ P)(A), and	 that
Q(P(B)) can	be	rewritten	as (Q ◦ P)(B). Putting	our	observations	together, we	deduce	that
d((Q ◦ P)(A), (Q ◦ P)(B)) = d(A,B). We	have	therefore	shown	precisely	what	is	needed
to	see	that Q ◦ P is	an	isometry.

Let	us	look	at	some	examples	of	composition	of	isometries. In	Figure 4.4.1 we	see	four	lines
labeledm, n, k and l, with	the	lines	all	intersecting	in	a	pointA. Let	us	start	with	a	very	simple
composition, namely RA

1/4 ◦ RA
1/2. This	composition	means	first	rotating	the	plane	clockwise	by

1/2 of	a	whole	rotation	centered	atA, and	then	rotating	the	plane	clockwise	by 1/4 of	a	whole
rotation	centered	atA. The	net	effect	of	this	composition	is	clearly	rotating	the	plane	clockwise
by 3/4 of	a	whole	rotation	centered	at A. In	symbols, we	have RA

1/4 ◦ RA
1/2 = RA

3/4.

A

n

m

k

l

Figure	4.4.1

Next, let	us	try	a	slightly	more	complicated	composition, namely Mm ◦ RA
1/2. Here	it	would

be	hard	to	guess	the	answer, as	we	did	in	the	previous	composition. Rather, we	will	calculate
the	composition	by	drawing	an	object	on	the	plane, for	example	the	letter F, and	then	seeing
what	happens	to	the	letter F as	a	result	of	doing	each	of	the	two	isometries	in	the	given	order.
In	the	left-most	part	of	Figure 4.4.2, we	see	that	a	letter F has	been	drawn. (We	could	just	as
well	have	drawn	the	letter F anywhere	else	in	the	plane.) In	the	middle	part	of	Figure 4.4.2,
we	see	the	result	of	doing RA

1/2 to	the	plane. It	is	important	to	observe	that	while	the	letter F

has	been	moved	as	a	result	of	doing RA
1/2, the	lines	of	reflection	have	not	moved; they	are	fixed

lines	of	reference, and	are	not	part	of	the	plane	that	is	transformed	when	we	do	an	isometry.
Hence, when	we	refer	to Mm, for	example, we	will	always	be	referring	to	the	same	line, no
matter	what	other	isometries	we	might	have	done	previously. (If	the	meaning	of	symbols	such	as
“Mm”	were	to	depend	upon	what	came	before	it, then	the	same	symbols	would	mean	different
things	in	different	situations, which	would	lead	to	much	confusion.) In	the	right-most	part	of
Figure 4.4.2, we	see	the	result	of	doing Mm to	the	letter F in	the	middle	part	of	the	figure. The
composition Mm ◦ RA

1/2, which	we	are	trying	to	compute, therefore	takes	the	letter F shown
in	the	left-most	part	of	the	figure, and	moves	it	to	where	it	is	shown	in	the	right-most	part	of
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the	figure. Now, by	Proposition 4.4.1, we	know	that	the	composition Mm ◦ RA
1/2 is	itself	an

isometry. So, we	need	to	find	a single isometry	that	would	take	the	letter F in	the	left-most	part
of	the	figure	to	the	letter F in	the	right-most	part	of	the	figure. The	answer	is	seen	to	beMk. We
therefore	see	that Mm ◦ RA

1/2 = Mk.
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In	practice, it	 is	possible	 to	do	 the	above	composition	a	bit	quicker	by	doing	 it	all	 in	one
drawing, but	labeling	each	step, as	shown	in	Figure 4.4.3. If	you	do	compositions	by	this	quicker
method, make	sure	you	label	each	step; otherwise, it	will	be	impossible	for	you	to	go	back	and
figure	out	what	you	did	(or	for	anyone	else	to	understand	what	you	did).

We	are	all	familiar	with	some	of	the	basic	properties	of	addition	and	multiplication	of	numbers,
for	example	that	the	order	of	addition	or	multiplication	does	not	matter; that	is, we	always	have
a+b = b+a for	any	numbers a and b, and	similarly	for	multiplication. We	will	discuss	such
properties	in	more	detail	in	Chapter 6. Does	composition	of	isometries	satisfy	all	the	same	basic
properties	as	addition	and	multiplication	of	numbers? Unfortunately, the	answer	is	no.
Referring	once	again	to	Figure 4.4.1, let	us	now	compare	the	two	expressions RA

1/4 ◦ Mm

and Mm ◦ RA
1/4. We	 leave	 it	 to	 the	 reader	 to	 verify	 (using	drawings	 similar	 to	 that	 shown

in	Figure 4.4.2)	 that RA
1/4 ◦ Mm = Ml and	that Mm ◦ RA

1/4 = Mn. Hence, the	order	of
composition	of	isometries	does	matter, in	contrast	to	addition	of	numbers. It	is	not	the	case	that
order	matters	with	the	composition	of	every	two	possible	isometries, for	exampleMm ◦ Mk =
RA
1/2 and Mk ◦ Mm = RA

1/2, but	it	is	the	case	that	order	sometimes	matters. Hence	we	do	not



128 4. Isometries

A
m

n

l

k

F F

F

1

2

3

Figure	4.4.3

have	a	general	rule	for	composition	of	isometries	analogous	to	the	general	rule a+ b = b+ a

for	numbers.
On	the	other	hand, some	properties	of	addition	and	multiplication	of	numbers	do	hold	for

composition	of	isometries. For	example, we	know	that a + (b + c) = (a + b) + c for	any
numbers a, b and c. Let	us	 look	at	an	example	of	a	 similar	calculation	 for	composition	of
isometries. Still	referring	to	Figure 4.4.1, consider	the	two	expressions Mk ◦ (RA

1/4 ◦ Mn) and

(Mk ◦ RA
1/4) ◦ Mn. Computing	each	of	these	expression, we	see

Mk ◦ (RA
1/4 ◦ Mn) = Mk ◦ Mm = RA

1/2

and
(Mk ◦ RA

1/4) ◦ Mn = Ml ◦ Mn = RA
1/2.

(We	leave	it	to	the	reader	to	verify	each	step	of	these	calculations.) The	general	version	of	this
property	is	given	as	Part (2)	of	the	following	proposition.

Proposition 4.4.2. Suppose	that P, Q and R are	isometries.

1. P ◦ I = P and I ◦ P = P.

2. (P ◦ Q) ◦ R = P ◦ (Q ◦ R).

Demonstration.

(1). We	will	show	that P ◦ I = P; the	fact	that I ◦ P = P can	be	shown	similarly, the	details
being	left	to	the	reader. Let A be	a	point	in	the	plane. We	will	show	that (P ◦ I)(A) = P(A).
BecauseA was	chosen	arbitrarily, it	will	then	follow	that	the	isometry P ◦ I equals	the	isometry
P, because	they	do	the	same	thing	to	every	point	in	the	plane. Let	us	examine (P ◦ I)(A). As	we
have	seen	previously, we	may	rewrite	this	expression	as P(I(A)). We	also	know	that I(A) = A.
Putting	these	last	two	observations	together, we	see	that (P ◦ I)(A) = P(I(A)) = P(A), which
is	what	we	wanted	to	show.
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(2). Let A be	a	point	in	the	plane. We	will	show	that ((P ◦ Q) ◦ R)(A) = (P ◦ (Q ◦
R))(A). Because A was	chosen	arbitrarily, it	will	then	follow	that	the	isometry (P ◦ Q) ◦ R

equals	the	isometry P ◦ (Q ◦ R), because	they	do	the	same	thing	to	every	point	in	the	plane.
Starting	with	the	left	hand	side	of	the	equation	we	wish	to	prove, we	compute

((P ◦ Q) ◦ R)(A) = (P ◦ Q)(R(A)) = P(Q(R(A)))

= P((Q ◦ R)(A)) = (P ◦ (Q ◦ R))(A).

Proposition 4.4.2 might	not	seem	very	impressive, but	it	will	be	used	(sometimes	explicitly,
and	more	often	implicitly)	throughout	our	discussion	of	isometries	and	symmetry. One	use	of
Part (2)	of	the	proposition	that	we	mention	now	is	that	it	allows	us	to	write	expressions	such	as
P ◦ Q ◦ R unambiguously. That	is, suppose	we	have	three	isometries, namely P, Q and R,
and	two	people	are	asked	to	compose	them, in	the	given	order	(which	is	what	the	expression
P ◦ Q ◦ R would	mean). Given	that	we	can	only	compose	two	isometries	at	a	time, one	person
might	compute P ◦ Q ◦ R by	doing (P ◦ Q) ◦ R, and	 the	other	person	might	compute
P ◦ Q ◦ R by	doing P ◦ (Q ◦ R). Because	of	Part (2)	of	the	proposition, we	are	assured	that
both	people	will	obtain	the	same	answer, and	therefore	it	is	not	ambiguous	to	write P ◦ Q ◦ R

We	end	 this	 section	with	 a	 comment. This	 section	 is	 rather	brief, and	contains	one	 fairly
simple	 idea, namely	 forming	 the	 composition	of	 two	 isometries	by	first	 doing	one	 isometry
and	then	doing	the	other. Do	not	let	the	simplicity	of	this	idea	fool	you. The	idea	of	forming
the	composition	of	 isometries	 is	 the	crucial	step	that	allows	for	a	mathematical	 treatment	of
symmetry, and	 for	various	 substantial	 results	about	 the	 symmetry	of	ornamental	patterns, as
discussed	in	Chapter 5. Indeed, it	might	be	said	that	we	choose	to	study	symmetry	in	terms	of
isometries	precisely	because	isometries	can	be	composed. By	composing	isometries, we	will	be
able	to	view	the	various	symmetries	of	an	object	not	as	isolated	things, but	as	things	that	interact
with	each	other, and	it	is	precisely	this	interaction	that	will	lead	to	interesting	results.

Exercise 4.4.1. Referring	to	Figure 4.4.1, compute	the	following	compositions; that	is, for
each	of	the	following	expressions, find	a	single	isometry	that	is	equal	to	it.

(1) RA
1/4 ◦ RA

1/3.

(2) RA
1/4 ◦ Mn.

(3) Mn ◦ Mm.

(4) Ml ◦ RA
3/4 ◦ Mn.

(5) RA
1/4 ◦ Mm ◦ RA

1/2.

For	 future	use, we	give	 the	 following	proposition, which	summarizes	 the	effect	of	compo-
sition	of	isometries	on	the	preservation	or	reversal	of	orientation. This	proposition, Part (3)	of
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which	intuitively	says	 that	 two	negatives	make	a	positive, certainly	seems	plausible, and	we
omit	a	detailed	demonstration	(which	would	require	a	more	technically	sophisticated	definition
of	orientation	preserving	and	reversing	than	we	have	given).

Proposition 4.4.3. Suppose	that P and Q are	isometries	of	the	plane.

1. If P and Q are	both	orientation	preserving, then P ◦ Q is	orientation	preserving.

2. If P is	orientation	preserving	andQ is	orientation	reversing, or	vice-versa, then P ◦ Q is
orientation	reversing.

3. If P and Q are	both	orientation	reversing, then P ◦ Q is	orientation	preserving.

4.5 Glide	Reflections

Section 4.3 ended	with	a	query: the	example	shown	in	Figure 4.3.9 demonstrated	that	either	we
had	to	conclude	that	two	identical	copies	of	the	letter F can	be	drawn	in	the	plane	in	such	a	way
that	no	isometry	of	the	plane	takes	one	to	the	other, or	that	there	are	isometries	other	than	the
three	types	we	have	discussed	so	far, namely	translations, rotations	and	reflections. We	now	use
the	notion	of	composition	of	isometries, as	discussed	in	Section 4.4, to	resolve	this	question.
As	previously	stated, it	is	not	possible	to	take	the	initial F to	the	terminal F in	Figure 4.3.9

by	a	translation, a	rotation	or	a	reflection. However, draw	the	line m halfway	between	the	two
letters F, as	shown	in	Figure 4.5.1. It	can	then	be	seen	that	first	reflecting	the	plane	in m, and
then	translating	the	plane	downward	by	the	appropriate	distance, will	take	the	initial F to	the
terminal F. It	would	also	work	to	translate	the	plane	downward, and	then	reflect	inm. Therefore,
although	no	single	reflection	or	translation	of	the	plane	will	take	the	initial F to	the	terminal F,
it	is	the	case	that	the	composition	of	a	reflection	and	a	translation	does	take	the	initial F to	the
terminal F. We	know	that	reflection	and	translation	are	isometries, and	so	by	Proposition 4.4.1,
we	also	know	that	the	composition	of	a	reflection	and	a	translation	is	an	isometry. Hence, there
is	an	isometry	of	the	plane	that	takes	the	initial F to	the	terminal F in	Figure 4.3.9. Let	us	call
this	isometry G. The	crucial	point	is	this: even	though G was	made	up	out	of	a	reflection	and
a	translation, it	is	a	single	isometry	in	its	own	right. Recall	that	what	counts	in	an	isometry	is
only	its	net	effect, that	is, where	each	point	of	the	plane	ends	up	in	relation	to	its	initial	position,
and	not	the	geometric	process	used	to	visualize	the	isometry	(in	the	present	case	first	reflecting
and	then	translating). Given	that	we	cannot	take	the	initial F to	the	terminal F in	Figure 4.3.9
by	a	single	translation, rotation	or	reflection, we	deduce	that	the	isometryG is	not	a	translation,
rotation	or	reflection. Hence, there	are	isometries	that	are	not	of	the	three	familiar	types.

The	isometry G discussed	above	is	an	example	of	new	type	of	isometry, called	a glide	reflec-
tion. A glide	reflection	is	an	isometry	that	is	obtained	by	first	reflecting	the	plane	in	a	line, and
then	translating	in	a	direction	parallel	to	the	line	of	reflection. (Please	note	the	word	“parallel”
here.) The	line	of	reflection	used	in	forming	a	glide	reflection	is	called	the line	of	glide	reflection.
If	the	translation	used	in	a	glide	reflection	has	zero	length, the	glide	reflection	is	called	a trivial
glide	reflection. That	is, a	trivial	glide	reflection	is	a	glide	reflection	that	is	just	a	reflection. A
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glide	reflection	that	is	not	just	a	reflection	is	called	a non-trivial glide	reflection. We	note	that
a	non-trivial	glide	reflection	has	no	fixed	points, but	the	line	of	glide	reflection	is	a	fixed	line.
Also, we	note	that	a	glide	reflection	reverses	orientation.
The	notation	for	a	glide	reflection, where	the	reflection	is	in	line m, and	the	translation	is	by

vector v (which	is	parallel	to m), is Gm,v. In	symbols	we	can	write	that Gm,v = Tv ◦ Mm. We
reiterate	the	important	point	that	a	glide	reflection	is	a	single	isometry, which	takes	each	point
of	the	plane, and	assigns	it	some	point	where	it	will	end	up. The	fact	that	we	construct	a	glide
reflection	as	the	composition	of	two	other	isometries	does	not	detract	from	the	fact	that	the	glide
reflection	can	be	thought	of	as	an	isometry	in	its	own	right.
An	immediate	question	that	comes	to	mind	concerning	glide	reflections	is	whether	it	matters

if	we	first	reflect	and	then	translate, or	vice-versa. Although	in	general	the	order	does	matter
when	we	compose	two	isometries, in	the	case	of	constructing	glide	reflections, it	turns	out	not
to	matter.

Proposition 4.5.1. Supposem is	a	line	in	the	plane, and v is	a	vector	that	is	parallel	tom. Then
Mm ◦ Tv = Tv ◦ Mm.

Demonstration. Supposem and v are	respectively	a	line	and	vector	as	shown	in	Figure 4.5.2 (i).
Let A be	any	point	in	the	plane. We	need	to	show	that	both Mm ◦ Tv and Tv ◦ Mm take A to
the	same	point	in	the	plane. It	will	follow	that Mm ◦ Tv = Tv ◦ Mm. If	the	point A is	on	the
line m, then	it	is	easy	to	see	that Mm ◦ Tv and Tv ◦ Mm take A to	the	same	point; we	leave
the	details	to	the	reader. Now	suppose	that A is	not	on	the	line m.
If	we	first	doMm, the	pointA is	taken	to	the	point B, as	shown	in	Figure 4.5.2 (ii). If	we	then

do Tv, the	point B is	taken	to	point C, as	shown	in	the	figure. On	the	other	hand, if	we	first
do Tv, the	point A is	taken	to	the	point D, as	shown	in	Figure 4.5.2 (ii). If	we	could	show	that
doing Mm takes D to C, then	it	would	follow	that	both Mm ◦ Tv and Tv ◦ Mm take A to D,
which	implies	that Mm ◦ Tv and Tv ◦ Mm both	take A to	the	same	point	in	the	plane, which
is	what	we	needed	to	show.
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Consider	the	quadrilateral ABCD. As	a	first	step, we	will	show	that	this	quadrilateral	is	a
rectangle. First, we	use	Exercise 4.2.4 (1)	to	see	that m is	the	perpendicular	bisector	of AB.
Next, because	the	vector v is	parallel	to m, it	follows	that	each	of AD and BC is	parallel	to
m. Because m is	perpendicular	to AB, it	follows	by	Proposition 1.2.3 that AD and BC are
both	perpendicular	to AB. Moreover, because Tv takes A to D, and B to C, we	see	that AD

has	the	same	length	as BC. We	can	now	apply	Exercise 2.3.5 to	the	quadrilateral ABCD, and
so	this	quadrilateral	is	in	fact	a	rectangle.
Let P the	the	point	where	the	linem intersects	the	line	segmentAB; we	know	from	previous

comments	that P is	the	midpoint	ofAB. LetQ be	the	point	where	the	linem intersects	the	line
segment CD. See	Figure 4.5.2 (iii). We	know	that ABCD is	a	rectangle. By	Exercise 2.3.2, we
deduce	that ABCD is	a	parallelogram. In	particular, it	follows	that CD is	parallel	to AB. Be-
causeAB is	perpendicular	tom, it	follows	from	Proposition 1.2.3 that CD is	perpendicular	to
m. It	is	simple	to	see	that	the	quadrilateralAPQD is	a	rectangle	(it	is	certainly	a	parallelogram,
and	use	Exercise 2.1.1). Hence AP has	the	same	length	as DQ. Because ABCD is	a	paral-
lelogram, it	follows	from	Proposition 2.2.5 (1)	that CD has	the	same	length	as AB. Because
AP has	half	the	length	of AB, and	because AB and CD have	the	same	lengths, it	follows
that DQ has	half	the	length	of CD. From	all	the	above	reasoning, we	deduce	that m is	the
perpendicular	bisector	of CD. It	follows	from	Exercise 4.2.4 (1)	that Mm takes C to D, and
that	is	what	we	needed	to	show.

D C

v v

(i)                                                          (ii)                                                  (iii)

m m

D

BA BA P

Q C

m

Figure	4.5.2
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Exercise 4.5.1. Draw	the	effect	on	the	letter R shown	in	Figure 4.5.3 as	the	result	of	glide
reflecting	the	plane	using	each	of	the	pairs	of	line	of	reflection	and	translation	vector	shown.

R
m

p

n

v

u

w

Figure	4.5.3

Exercise 4.5.2. Suppose	that G is	a	glide	reflection. What	kind	of	isometry	is G ◦ G?

Exercise 4.5.3. Suppose m is	a	line	in	the	plane, and v is	a	vector	that	is	not	parallel	to
m. Is	it	always	the	case	that Mm ◦ Tv ̸= Tv ◦ Mm? Explain	your	answer.

Another	important	question	concerning	glide	reflection	is	the	following. We	construct	a	glide
reflection	by	first	reflecting	in	a	line, and	then	translating	in	a	direction	parallel	to	the	line	of
reflection. What	would	happen	 if	we	were	 to	 reflect	 the	plane	 in	a	 line, and	 then	 translate
in	a	direction	not	parallel	to	the	line	of	reflection. Would	we	obtain	yet	another	new	type	of
isometry? It	turns	out	that	the	composition	of	any	reflection	and	any	translation	equals	either	a
reflection	or	a	glide	reflection	(depending	upon	the	relationship	between	the	line	of	reflection
and	the	translation	vector), though	we	will	omit	the	details. Therefore	we	do	not	obtain	any	new
type	of	isometry	by	first	reflecting	and	then	translating	in	a	direction	not	parallel	to	the	line	of
reflection.
Recall	Figure 4.3.9. When	we	first	encountered	 that	example, we	saw	 that	no	 translation,

rotation	or	reflection	alone	could	take	the	initial F to	the	terminal F. At	the	time	we	were	not
familiar	with	any	other	types	of	isometries, but	now	we	know	about	glide	reflections, and	we
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have	seen	in	the	current	section	that	the	initial F in	Figure 4.3.9 can	be	taken	to	the	terminal F
by	a	glide	reflection. How	was	this	glide	reflection	found?
To	find	the	isometry	that	takes	the	initial F to	the	terminal F in	Figure 4.3.9, we	start	just	as

we	did	for	reflections, namely	by	labeling	two	points	on	the	initial F by	the	letters A and B,
and	labeling	the	corresponding	point	on	the	terminal F by	the	letters A ′ and B ′. We	can	then
find	the	midpoints	of	the	two	line	segments AA ′ and BB ′, and	draw	a	line	through	these	two
midpoints. Call	this	line m. See	Figure 4.5.4.
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Figure	4.5.4

It	 is	 seen	 that	 simply	 reflecting	 the	plane	 in	 the	 line m does	not	 take	 the	 initial F to	 the
terminal F. However, if	we	first	reflect	the	plane	in	the	line m, and	then	follow	this	reflection
by	a	translation	parallel	tom by	the	vertical	distance	between	the	initial F and	terminal F, then
the	composition	of	the	reflection	and	translation	will	indeed	take	the	initial F to	the	terminal F.
Hence, there	is	a	glide	reflection	that	takes	the	initial F to	the	terminal F.
We	can	now	state	 the	complete	answer	 to	 the	problem	of	 recognizing	 isometries	by	 their

effects, which	we	left	unfinished	in	Section 4.3. That	our	answer	is	complete	relies	upon	Propo-
sition 4.6.1 in	the	next	section, as	well	as	some	mathematical	details	we	skip	over	to	avoid	a
digression, but	we	can	state	the	complete	answer	right	now. Suppose	we	are	give	two	identi-
cal	letters F in	the	plane. We	can	then	find	which	single	isometry	takes	one F to	the	other, as
follows. (Moreover, this	isometry	turns	out	to	be	unique.) There	are	two	cases.

Case	1: the	two	letters F have	the	same	orientation. Connect	two	pairs	of	corresponding	points
with	line	segments, and	form	the	perpendicular	bisectors. If	the	two	perpendicular	bisectors	in-
tersect, then	the	isometry	is	a	rotation, with	the	point	of	intersection	being	the	center	of	rotation;
the	angle	can	be	found	by	drawing	lines	from	the	center	of	rotation	to	corresponding	points	on
the	two	letters F, and	measuring	the	angle	between	these	two	lines. If	the	two	perpendicular
bisectors	are	parallel, the	isometry	is	a	translation; simply	draw	an	arrow	from	a	point	on	one F
to	its	corresponding	point	on	another F.
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Case	2: the	two Fs	have	opposite	orientations. Connect	two	pairs	of	corresponding	points	with
line	segments, and	find	the	midpoints	of	these	two	lines. Draw	a	line	through	the	two	midpoints.
If	 the	 line	 through	 the	midpoints	 is	perpendicular	 to	 the	connecting	 line	segments, then	 the
isometry	is	a	reflection	in	the	line	through	the	midpoints; if	the	line	through	the	midpoints	is	not
perpendicular	to	the	connecting	line	segments, then	the	isometry	is	a	glide	reflection, obtained
by	first	reflecting	in	the	line	through	the	midpoints, and	then	translating	as	necessary.

Exercise 4.5.4. In	each	of	the	three	parts	of	Figure 4.5.5 are	shown	initial	and	terminal
letters F, obtained	by	using	an	 isometry. For	each	of	 the	 three	cases, state	what	 type	of
isometry	was	used. Moreover, if	the	isometry	is	a	rotation, indicate	its	center	of	rotation;
if	 the	 isometry	 is	a	 translation, indicate	 the	 translation	by	an	arrow; if	 the	 isometry	 is	a
reflection, indicate	the	line	of	reflection; if	the	isometry	is	a	glide	reflection, indicate	the
line	of	reflection	used	in	the	glide	reflection.

(iii)

(i)                                                                                         (ii)

FterminalF
initial

F
initial

F F
initial

Fterminal

terminal

Figure	4.5.5
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4.6 Isometries—The	Whole	Story

Having	learned	about	glide	reflections	in	Section 4.5, we	are	now	familiar	with	four	types	of
isometries: translations, rotations, reflections	and	glide	reflections. Are	 there	any	other	 types
of	isometries? As	stated	in	the	following	proposition, the	answer	is	no. This	proposition	is	the
most	fundamental	fact	about	isometries	of	the	plane, and	it	will	form	the	basis	for	much	of	our
subsequent	discussion	of	isometries	and	of	symmetry	(given	in	this	chapter	and	the	next). The
demonstration	of	this	proposition	is	somewhat	lengthy, and	is	given	in	Appendix A.

Proposition 4.6.1. Any	isometry	of	the	plane	is	either	a	translation, a	rotation, a	reflection	or	a
glide	reflection.

We	discussed	in	Section 4.2 the	notions	of	fixed	points, fixed	lines, and	orientation	preserving
and	reversing. Now	that	we	know	all	the	types	of	isometries, we	summarize	these	properties	for
all	types	of	isometries	in	Table 4.6.1.

Isometry	Type Fixed	Points Fixed	Lines Orientation
Identity	isometry I all	points all	lines preserving
Non-triv.	trans. Tv no	points lines	parallel	to v preserving
Non-triv.	rot. RA

α the	point A none, or	all	lines	through A preserving
Refl. Mm points	on m m, and	all	lines	perp.	to m reversing
Non-triv.	gl.	refl. Gm,v no	points the	line m reversing

.

Table	4.6.1

Do	we	really	need	all	four	types	of	isometries? The	answer	is	both	yes	and	no. We	could	obtain
all	isometries	by	using	just	translations, rotations	and	reflections, if	we	allow	for	combinations
of	them	(because	glide	reflections	are	obtained	by	composing	reflections	and	translations). Ac-
tually, if	we	want	to	be	the	most	“economical”	in	terms	of	using	the	fewest	types	of	isometries	to
obtain	all	others, we	could	use	only	reflections. It	turns	out, though	this	fact	is	not	at	all	obvious,
that	we	can	get	all	the	other	three	types	of	isometries	(and	therefore	all	isometries)	by	combining
up	to	three	reflections	at	a	time. Indeed, the	bulk	of	the	proof	of	Proposition 4.6.1, as	given	in
Appendix A,	involves	showing	that	the	net	effect	of	any	isometry	of	the	plane	can	be	obtained
by	either	the	identity, or	the	composition	of	one, two	or	three	reflections. If, however, we	want
each	isometry	(meaning	each	possible	net	effect)	to	be	described	by	a	single	transformation	of	the
plane, rather	than	a	composition	of	other	transformations, then	we	need	translations, rotations,
reflections	and	glide	reflections. Our	goal	being	not	efficiency	but	obtaining	an	understanding
of	isometries	and	symmetry, we	will	use	all	four	types	of	isometries.
If	we	combine	two	isometries, how	do	we	know	what	the	result	is? One	approach	would	be	to

draw	an	initial	object	in	the	plane, perform	the	two	isometries	one	after	the	other, and	then	look
at	the	net	effect	taking	the	initial	object	to	the	terminal	object. We	could	then	apply	the	method
of	recognizing	isometries	discussed	in	Sections 4.3 and	4.5 to	figure	out	what	the	resulting	single
isometry	was. However, it	will	be	more	useful	to	be	able	to	know	the	result	of	combining	two
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isometries	simply	from	knowing	the	two	isometries	that	are	combined. (As	a	rough	analogy, it
is	similarly	better	to	figure	out 547× 23 with	pencil	and	paper, rather	than	making 23 rows	of
547 stones	each, and	then	counting	the	total	number	of	stones.)
Recalling	that	every	isometry	is	one	of	our	four	types, we	can	see	how	to	combine	any	two

isometries	by	breaking	up	our	discussion	into	various	cases, depending	upon	which	two	types
of	isometries	are	being	combined. In	some	cases	we	can	obtain	very	specific	results	about	the
result	of	composing	two	isometries	of	a	given	type; in	other	cases, it	is	very	difficult	to	write	a
formula	for	the	resulting	isometry	(unless	we	use	some	more	advanced	mathematics), but	we	can
at	least	state	its	type. In	some	of	the	cases, we	will	restrict	our	attention	to	non-trivial	translations,
rotations	and	glide	reflections, to	avoid	various	special	cases. We	will	state	here	the	three	most
important	results, namely	those	concerning	compositions	of	 two	translations, two	reflections
and	two	rotations. It	is	also	possible	to	discuss	the	compositions	of	two	glide	reflections, and
compositions	of	two	different	types	of	isometries; to	avoid	a	lengthy	digression, we	will	discuss
these	other	cases	in	Appendix B.
In	order	 to	discuss	 the	 composition	of	 two	 translations, we	need	 to	discuss	 the	notion	of

addition	of	vectors	in	the	plane. Suppose	we	have	two	vectors v andw in	the	plane, represented
by	arrows, as	shown	in	Figure 4.6.1 (i). We	can	add	these	two	vectors	as	follows. First, position
the	two	arrows	so	that	they	have	a	common	starting	point, as	shown	Figure 4.6.1 (ii); there	is
no	problem	moving	arrows	that	represent	vectors, as	long	as	the	arrows	are	not	stretched	or
shrunk, or	rotated. Next, we	can	form	the	parallelogram	with	the	two	arrows	as	sides, as	shown
Figure 4.6.1 (iii). Finally, we	take	the	diagonal	in	the	parallelogram	to	be	an	arrow	for	the	sum
of v and w, denoted v +w; see	Figure 4.6.1 (iv). This	type	of	vector	addition	is	very	useful	in
both	mathematics	and	the	sciences	(for	example, the	addition	of	forces	in	physics).

(i)                                                                 (ii)

(iii)                                                                       (iv)

v

w

v
v

w

w

v
v

w

w

v

w

v+w

Figure	4.6.1



138 4. Isometries

We	can	now	use	addition	of	vectors	to	understand	the	composition	of	translations.

Proposition 4.6.2. Suppose	that Tv and Tw are	translations	of	the	plane. Then Tw ◦ Tv = Tv+w.

Demonstration. Choose	any	point A in	the	plane. Then	the	result	of	doing Tw ◦ Tv to A is	the
same	as	first	doing Tv to A, yielding Tv(A), and	then	doing Tw to	that, yielding Tw(Tv(A)).
See	Figure 4.6.2. However, the	triangle	shown	in	this	figure	is	the	same	as	the	lower	half	of	the
parallelogram	shown	in	Figure 4.6.1 (iv). Hence Tw(Tv(A)) is	the	same	as Tv+w(A). Because
this	reasoning	holds	for	any	point A in	the	plane, we	deduce	that	the	isometry Tw ◦ Tv has	the
same	net	effect	as	the	isometry Tv+w. It	follows	that Tw ◦ Tv = Tv+w.

w

v

v+w

Tv(A)A

Tw(Tv(A))

Figure	4.6.2

It	is	seen	that	for	any	two	vectors v andw in	the	plane, we	have v+w = w+ v. Combining
this	observation	with	the	above	proposition, we	deduce	that	for	any	two	vectors v and w, we
have Tw ◦ Tv = Tv ◦ Tw. In	other	words, order	does	not	matter	when	two	translations	are
composed. By	contrast, order	does	matter	when	most	other	isometries	are	composed.
We	now	turn	to	the	composition	of	two	reflections; there	are	three	subcases, depending	upon

whether	the	two	lines	of	reflection	are	equal, are	parallel, or	are	neither	parallel	nor	equal.

Proposition 4.6.3. Suppose	that Mm and Mn are	reflections	of	the	plane.

1. If m = n, then Mn ◦ Mm = I.

2. If m and n are	parallel, then Mn ◦ Mm = Tv, where v is	 the	vector	 that	 is	 in	 the
direction	perpendicular	to m and n, and	that	has	length	twice	the	distance	from m to
n.

3. If m and n are	neither	parallel	nor	equal, then Mn ◦ Mm = RA
α , where A is	the	point

of	intersection	of m and n, and	where α is	twice	the	angle	from m to n.

Demonstration. We	know	that	each	ofMm andMn are	orientation	reversing, and	therefore, by
Proposition 4.4.3 (3)	we	know	thatMn ◦ Mm is	orientation	preserving. Given	thatMn ◦ Mm is
an	isometry	by	Proposition 4.4.1, then	it	is	either	a	translation, a	rotation, a	reflection	or	a	glide
reflection	by	Proposition 4.6.1. Using	Table 4.6.1, it	 follows	that Mn ◦ Mm must	be	either
a	translation	or	a	rotation	(or	the	identity	isometry, which	is	both	a	translation	or	a	rotation),
because	reflections	and	glide	reflections	are	orientation	reversing.
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(1). This	is	clear, becauseMm is	the	result	of	flipping	the	plane	about	the	linem, and	flipping
the	plane	about	the	same	line	twice	leaves	every	point	in	the	plane	where	it	started.

(2). We	claim	that Mn ◦ Mm does	not	fix	any	point	in	the	plane. Suppose, to	the	contrary,
that Mn ◦ Mm did	fix	some	point, say B. That	would	mean	that Mn(Mm(B)) = B. We	then
deduce	thatMn(Mn(Mm(B))) = Mn(B). By	applying	Part (1)	of	this	proposition	toMn, we
therefore	see	that Mm(B) = Mn(B).
How	could	 this	possibly	happen? There	are	 three	cases, depending	upon	whether B is	on

m, is	on n or	is	not	on	either	line. If B is	on m, then Mm(B) = B, but Mn(B) ̸= B, but	this
cannot	possibly	be	the	case, given	thatMm(B) = Mn(B). So, we	conclude	that B is	not	onm.
A similar	argument	shows	that B is	not	on n. Now	suppose	that B is	not	on	eitherm or n. Then
Mm(B) ̸= B and Mn(B) ̸= B. In	that	case, we	use	Exercise 4.2.4 (1)	to	deduce	that m is	the
perpendicular	bisector	of	the	line	segment	from B to Mm(B), and	that n is	the	perpendicular
bisector	of	the	line	segment	from B toMn(B). However, given	thatMm(B) = Mn(B), we	see
that m must	be	the	same	line	as n, which	cannot	be, given	that m and n are	parallel, which
means	that	they	are	distinct	lines. The	final	conclusion	of	this	argument	is	that Mn ◦ Mm has
no	fixed	points, because	our	assumption	to	the	contrary	led	to	a	logical	impossibility.
We	know	thatMn ◦ Mm is	either	the	identity	isometry, a	translation	or	a	rotation. The	identity

isometry	fixes	all	points, and	a	non-trivial	rotation	fixes	precisely	one	point. Hence, we	see	that
Mn ◦ Mm must	be	a	translation. To	find	out	which	translation, we	can	simply	see	what	happens
to	one	point	in	the	plane. For	convenience, suppose	that	both	the	lines m and n are	vertical,
as	in	Figure 4.6.3 (if	not, simply	change	your	vantage	point). Consider	any	point X on	the	line
m. Then Mm fixes X, and Mn takes X to	a	point Y that	is	directly	to	the	right	of X, and	at	a
distance	from X that	is	twice	the	distance	fromm to n. It	follows	thatMn ◦ Mm = Tv, where
v is	the	vector	that	is	in	the	direction	perpendicular	to m and n, and	that	has	length	twice	the
distance	from m to n.

(3). Observe	that	the	pointA, which	is	the	intersection	of	the	linesm and n, is	fixed	by	both
Mm andMn. Hence	the	pointA is	fixed	byMn ◦ Mm. SupposeZ is	a	point	on	the	linem that
is	different	from	the	pointA. See	Figure 4.6.4. ThenMm fixesZ, andMn does	not	(becauseZ is
not	on n). Hence	the	point Z is	not	fixed	byMn ◦ Mm. We	therefore	see	thatMn ◦ Mm fixes
some	points	and	does	not	fix	others. We	know	thatMn ◦ Mm is	either	the	identity	isometry, a
translation	or	a	rotation. The	identity	isometry	fixes	all	points, and	a	non-trivial	translation	fixes
no	points. It	follows	thatMn ◦ Mm is	a	non-trivial	rotation. Such	a	rotation	fixes	precisely	one
point, namely	its	center	of	rotation. It	therefore	must	be	the	case	that	the	pointA is	the	center	of
rotation. To	find	the	angle	of	rotation, we	can	simply	see	what	happens	to	one	point	other	than
A. Take	the	point Z chosen	above. Suppose	thatMn ◦ Mm moves Z to	the	point	labeledW in

Figure 4.6.4. Using	the	definition	of	reflection, it	can	be	seen	that	the	angle	from	the	line
←→
AW

to	the	line n is	equal	to	the	angle	from	the	line m (which	is	the	same	as	the	line
←→
AZ)	to	the

line n. (A rigorous	demonstration	of	the	equality	of	these	two	angles	can	be	obtained	by	using
congruent	triangles; the	reader	is	asked	to	provide	details	in	Exercise 4.6.1.) It	follows	that	the
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rotation	with	center	of	rotation A that	takes Z to W must	be	rotation	by	the	angle α, which	is
twice	the	angle	from m to n. We	therefore	see	that Mn ◦ Mm = RA

α .

nm

X Y

Figure	4.6.3

Z

W

A

n m

Figure	4.6.4
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Exercise 4.6.1. [Used	in	This	Section] In	the	demonstration	of	Proposition 4.6.3 (3), we

asserted	that	the	angle	from	the	line
←→
AY to	the	line n is	equal	to	the	angle	from	the	linem

to	the	line n; see	Figure 4.6.4. Use	congruent	triangles	to	demonstrate	this	claim.

We	turn	next	to	the	composition	of	two	rotations. Once	again	we	have	two	main	cases, this
time	depending	upon	whether	the	two	centers	of	rotation	are	the	same	or	not. However, in	the
case	where	the	two	centers	of	rotation	are	not	 the	same, there	are	two	subcases, depending
upon	whether	 the	 two	angles	add	up	to	a	multiple	of 360◦ or	not. Moreover, when	the	 two
angles	do	not	add	up	to	a	multiple	of 360◦, then	we	will	not	be	able	to	give	a	simple	description
of	the	resulting	isometry, which	is	definitely	a	rotation, but	for	which	it	is	tricky	to	describe	the
center	of	rotation. A pictorial	approach	to	finding	the	desired	center	of	rotation	is	found	in	the
demonstration	of	Proposition 4.6.4 (this	pictorial	approach	will	be	useful	in	Appendix E).

Proposition 4.6.4. Suppose	that RA
α and RB

β are	rotations	of	the	plane.

1. If A = B, then RB
β ◦ RA

α = RA
α+β.

2. If A ̸= B, and	if α + β is	not	a	multiple	of 360◦, then RB
β ◦ RA

α = RC
α+β, where C is	a

point	in	the	plane	uniquely	determined	byA, B, α and β (and	which	is	described	more
precisely	in	the	demonstration).

3. If A ̸= B, and	if α+ β is	a	multiple	of 360◦, then RB
β ◦ RA

α = Tv, where v is	the	vector
from A to RB

β(A).

Demonstration. We	know	that	each	of RA
α and RB

β are	orientation	preserving, and	therefore,
by	Proposition 4.4.3 (1)	we	know	that RB

β ◦ RA
α is	orientation	preserving. Given	that RB

β ◦ RA
α

is	an	isometry	by	Proposition 4.4.1, then	it	is	either	a	translation, a	rotation, a	reflection	or	a
glide	reflection	by	Proposition 4.6.1. Using	Table 4.6.1, it	follows	that RB

β ◦ RA
α must	be	either

a	translation	or	a	rotation	(or	the	identity	isometry, which	is	both	a	translation	or	a	rotation).
Consider	the	fixed	points	of RB

β ◦ RA
α , if	there	are	any. If R

B
β ◦ RA

α turns	out	to	have	no	fixed
points, then	it	must	be	a	non-trivial	translation; if	it	has	at	least	one	fixed	point	and	at	least	one
point	that	is	not	fixed, then	it	must	be	a	non-trivial	rotation, and	the	fixed	point	must	be	the
center	of	rotation; if	it	has	more	than	one	fixed	point, then	it	must	be	the	identity	isometry.

(1). Suppose	that A = B. Then RB
β ◦ RA

α = RA
β ◦ RA

α . Because	both R
A
β and RA

α fix	the	point
A, then RA

β ◦ RA
α fixesA as	well. Hence RA

β ◦ RA
α has	a	fixed	point, and	cannot	be	a	non-trivial

translation; it	must	therefore	be	a	rotation	with	center	of	rotation A, or	the	identity	isometry
(which	can	also	be	thought	of	as	a	rotation	with	center	of	rotation A).
Now	that	we	know	that RA

β ◦ RA
α is	a	rotation	with	center	of	rotation A, the	question	is	by

what	angle. Draw	an	initial	object	in	the	plane, for	example	the	letter F. If	we	perform RA
α , then

the	resulting	image	of	the	letter Fwill	make	angle αwith	the	original	letter F. If	we	then	perform
RA
β , the	resulting	image	of	the	letter F will	now	make	angle α + β with	the	original	letter F.

Hence, the	only	possible	rotation	that	equals RA
β ◦ RA

α is RA
α+β.
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(2). Suppose	that A ̸= B, and	that α+ β is	not	a	multiple	of 360◦. By	adding	or	subtracting
multiples	of 360◦ to	each	ofα andβ as	necessary, we	can	ensure	thatα andβ are	both	between
0◦ and 360◦; adding	and	subtracting	multiples	of 360◦ does	not	change	the	effect	of RB

β or RA
α .

We	now	make	the	following	construction. First, we	draw	a	line	segment	from A to B. Next, we
draw	the	angle α at	the	pointA, and	the	angle β at	the	point B, so	that	both	angles	are	bisected
by AB. See	Figure 4.6.5. The	two	angles	intersect	in	points C and D as	shown. In	the	figure,
for	convenience, we	have	positioned	the	points A and B so	that AB is	horizontal; if	this	line
segment	is	not	horizontal, then	the	construction	would	look	just	like	what	we	have	shown, but
rotated	appropriately. There	are, in	fact, a	number	of	different	cases	that	would	look	somewhat
different	from	what	is	shown	in	the	figure, depending	upon	whether	each	of	the	angles α and
β is	less	or	more	than 180◦; we	have	drawn	the	case	where	both	angles	are	less	than 180◦. The
key	point	to	note	is	that, because α + β is	not	a	multiple	of 360◦, the	two	angles	will	indeed
intersect	in	two	points.

A α β B

C

D

Figure	4.6.5

We	now	make	the	following	observation. If	we	apply	the	isometry RA
α to	the	plane, the	point

labeled C will	be	taken	to	the	point D. If	we	then	apply RB
β, the	point D will	be	taken	back	to

C. Hence, the	composition RB
β ◦ RA

α fixes	the	point C. On	the	other	hand, it	can	be	seen	that
RB
β ◦ RA

α does	not	fix	the	point D. Therefore, the	isometry RB
β ◦ RA

α fixes	at	least	one	point,
but	does	not	fix	all	points. We	already	saw	that RB

β ◦ RA
α is	either	a	rotation, a	translation	or

the	identity	isometry. Because RB
β ◦ RA

α cannot	be	a	non-trivial	translation	(which	would	fix	no
points), nor	the	identity	isometry	(which	fixes	all	points), it	must	be	a	rotation. A rotation	fixes
precisely	one	point, namely	its	center	of	rotation. We	deduce	that RB

β ◦ RA
α is	a	rotation	with

center	of	rotation C.
Now	that	we	know	that RB

β ◦ RA
α is	a	rotation, the	question	is	by	what	angle. Using	the	same

idea	as	in	the	demonstration	of	Part (1)	of	this	proposition, it	is	seen	that	the	angle	must	beα+β.
Hence, the	only	possible	rotation	that	equals RB

β ◦ RA
α is RC

α+β.

(3). Suppose	that A ̸= B, and	that α+ β is	a	multiple	of 360◦. Because α+ β is	a	multiple
of 360◦, then	either α and β are	both	multiples	of 360◦, or	neither	are	multiples	of 360◦. We
have	to	look	at	each	of	these	two	cases	separately.
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First, suppose	that α and β are	both	multiples	of 360◦. Then RB
β and RA

α are	both	the	identity
isometry. It	follows	that RB

β ◦ RA
α is	also	the	identity	isometry. Because	the	identity	isometry	is	a

trivial	translation, then RB
β ◦ RA

α = Tv, where v has	length	zero.
Next, suppose	 that	neither α nor β is	 a	multiple	of 360◦. Then	neither RB

β nor RA
α is	 the

identity	isometry. We	want	to	show	that RB
β ◦ RA

α is	a	translation. We	will	show	this	result	by
eliminating	the	other	possibilities. First, note	that RA

α fixes	the	point A, but RB
β does	not	fix	the

point A, because RB
β is	a	non-trivial	rotation. It	follows	that RB

β ◦ RA
α does	not	fix	the	point A,

and	therefore RB
β ◦ RA

α is	not	the	identity	isometry.
Now, suppose	that RB

β ◦ RA
α were	a	rotation. Then	it	would	have	some	center	of	rotation,

say	a	point D. If RB
β ◦ RA

α were	a	rotation, by	what	angle	would	the	rotation	be? Using	the
same	idea	as	in	the	demonstration	of	Part (1)	of	this	proposition, it	is	seen	that	the	angle	must	be
α+ β. Hence, the	only	possible	rotation	that	could	equal RB

β ◦ RA
α would	be RD

α+β. However,
we	are	assuming	that α+β is	a	multiple	of 360◦. It	would	then	follow	that RD

α+β is	the	identity
isometry, and	hence	that RB

β ◦ RA
α is	the	identity	isometry. However, we	have	seen	that RB

β ◦ RA
α

does	not	fix	the	point A, so	it	could	not	possibly	be	the	identity	isometry. We	therefore	have	a
logical	contradiction. The	only	resolution	of	this	dilemma	is	that RB

β ◦ RA
α cannot	be	a	rotation.

We	deduce	that RB
β ◦ RA

α must	be	a	translation.
Because RB

β ◦ RA
α is	 a	 translation, it	 equals Tv, where v is	 some	vector	 in	 the	plane. To

determine	this	vector, we	can	take	any	point	in	the	plane, see	where	it	ends	after	performing
RB
β ◦ RA

α , and	then	take	the	arrow	from	the	point’s	original	position	to	its	final	position. For
convenience, we	choose	the	point A. Because RA

α fixes	the	point A, then	we	see	that	the	result
of	applying RB

β ◦ RA
α to	 the	point A results	 in	 the	point RB

β(A). Therefore, we	deduce	 that
RB
β ◦ RA

α = Tv, where v is	the	vector	from A to RB
β(A).

Having	just	given	propositions	describing	the	details	of	some	of	the	possible	compositions	of
isometries, we	leave	the	details	of	the	other	types	of	compositions	to	Appendix B.	What	we	state
right	now	is	a	summary	of	all	the	ways	of	combining	the	four	different	types	of	isometries	in	a
chart, as	seen	in	Table 4.6.2. Notice	that	this	table	can	be	broken	into	four	sub-boxes, based
on	orientation	preserving	or	orientation	reversing. In	this	table, we	include	trivial	translations,
rotations	and	glide	reflections, to	avoid	special	cases.

◦ translation rotation reflection glide	reflection
translation trans. trans.	or	rot. refl.	or	gl.	refl. refl.	or	gl.	refl.
rotation trans.	or	rot. trans.	or	rot. refl.	or	gl.	refl. refl.	or	gl.	refl.
reflection refl.	or	gl.	refl. refl.	or	gl.	refl. trans.	or	rot. trans.	or	rot.

glide	reflection refl.	or	gl.	refl. refl.	or	gl.	refl. trans.	or	rot. trans.	or	rot.

.

Table	4.6.2
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Exercise 4.6.2. Suppose	a	rotation	is	followed	by	a	glide	reflection, which	is	then	followed
by	a	reflection. What	type	of	isometry	(or	isometries)	could	be	obtained	as	a	result	of	this
composition?

Exercise 4.6.3. Describe	the	isometry	that	results	from	a	halfturn	followed	by	another	half-
turn? (The	result	depends	upon	whether	the	two	halfturns	have	the	same	center	of	rotation
or	not.)

Exercise 4.6.4. [Used	in	Section 5.5] A halfturn	is	followed	by	a	reflection. Suppose	that
the	center	of	rotation	of	 the	halfturn	is	on	the	line	of	reflection. Show	that	 the	resulting
isometry	is	a	reflection	in	the	line	through	the	center	of	rotation	and	perpendicular	to	the
original	line	of	reflection.

Exercise 4.6.5. [Used	in	Section 5.5] A halfturn	is	followed	by	a	reflection. Suppose	that
the	center	of	rotation	of	the	halfturn	is	not	on	the	line	of	reflection. Show	that	the	result-
ing	isometry	is	a	glide	reflection, which	has	line	of	glide	reflection	through	the	center	of
rotation, and	perpendicular	to	the	original	line	of	reflection.

Exercise 4.6.6. [Used	in	Section 5.5] A halfturn	is	followed	by	a	glide	reflection. Suppose
that	the	center	of	rotation	of	the	halfturn	is	on	the	line	of	glide	reflection. Show	that	the
resulting	 isometry	 is	 a	 reflection, which	has	 line	of	 reflection	perpendicular	 to	 the	 line
of	glide	reflection, and	at	a	distance	from	the	center	of	rotation	half	 the	distance	of	 the
translation	in	the	glide	reflection.

Exercise 4.6.7. [Used	in	Section 5.5] A reflection	is	followed	by	a	glide	reflection. Suppose
that	 the	 line	of	 reflection	 is	perpendicular	 to	 the	 line	of	glide	 reflection. Show	 that	 the
resulting	isometry	is	a	halfturn, with	the	center	of	rotation	on	the	line	of	glide	reflection.

Finally, we	 turn	 to	 the	question	of	 inverses	of	 isometries. By	way	of	analogy, consider	 the
integers	and	the	operation	of	addition. Given	the	number 5, is	there	a	number	that	“cancels	it
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out”	with	respect	to	addition? The	answer	is	yes, namely	the	number−5, because 5+(−5) = 0,
and (−5) + 5 = 0. We	will	discuss	this	concept	at	its	most	general	in	Section 6.4, but	for	now,
we	want	to	know	whether	there	is	an	analog	of	“canceling	out”	in	the	realm	of	isometries	and
composition. Suppose	we	are	given	an	isometry P. Can	we	find	some	other	isometry Q that
“cancels” P out? That	is, can	we	find	an	isometryQ such	that P ◦ Q = I andQ ◦ P = I? (We
need	to	specify	both	these	equations, because	in	general	the	order	of	composition	of	isometries
does	matter, and	we	cannot	automatically	deduce	one	of	these	equations	from	the	other.) If	we
can	find	such	an	isometryQ, is	is	called	an inverse	isometry of P; we	often	simply	say inverse of
P for	short. For	example, consider	the	isometry P that	is	translation	to	the	right	by 4 inches. If	we
letQ be	translation	to	the	left	by 4 inches, then	clearlyQ cancels	out P, and	vice-versa, in	that
doing	one, and	then	the	other, leaves	us	with	the	identity	isometry. In	other	words, translation
to	the	left	by 4 inches	is	the	inverse	of	translation	by 4 inches	to	the	right.
Does	every	isometry	have	an	inverse? If	so, is	the	inverse	unique? Can	the	inverse, if	it	exists,

be	found	easily? As	seen	in	Proposition 4.6.5, the	answer	to	all	these	questions	is	yes. We	use
the	following	common	notation. Suppose P is	an	isometry. The	inverse	isometry, of P is	denoted
P−1. We	therefore	have P ◦ P−1 = I and P−1 ◦ P = I. These	last	two	equations	mean	that	for
any	point X in	the	plane, we	have P(P−1(X)) = X and P−1(P(X)) = X.
In	order	 to	discuss	 inverses	of	 translations, we	will	 need	 the	 following	notion	concerning

vectors	in	the	plane. Suppose	we	have	a	vector v in	the	plane, represented	by	an	arrow. We
define	the inverse	vector of v to	be	the	vector, denoted−v, represented	by	the	arrow	that	has	the
same	length	as	the	arrow	representing v, but	having	the	opposite	direction. Clearly v+(−v) = 0
and (−v) + v = 0, where 0 here	means	a	vector	with	length	zero.

Proposition 4.6.5. Suppose	that P is	an	isometry. Then P has	a	unique	inverse. Further, we	can
find	the	inverse	of P as	follows.

1. I−1 = I.

2. If Tv is	a	translation, then (Tv)
−1 = T−v.

3. If RA
α is	a	rotation, then

(
RA
α

)−1
= RA

−α.

4. If Mn is	a	reflection, then (Mn)
−1 = Mn.

5. If Gn,v is	a	glide	reflection, then (Gn,v)
−1 = Gn,−v.

Demonstration. We	know	from	Proposition 4.6.1 that	every	isometry	of	the	plane	is	either	a
translation, a	rotation	a	reflection	or	a	glide	reflection. Hence, once	we	demonstrate	Parts (2)–
(5)	of	this	proposition, as	will	be	done	shortly, then	it	will	be	verified	that	every	isometry	has	an
inverse.
To	show	that	the	inverse	of	each	isometry	is	unique, suppose	to	the	contrary	that	there	is	an

isometry P that	has	two	distinct	inverses Q and R. Then, by	the	definition	of	what	it	means	to
be	an	inverse, we	know	that P ◦ Q = I and Q ◦ P = I, and	that P ◦ R = I and R ◦ P = I.
We	then	see	that

Q = Q ◦ I = Q ◦ (P ◦ R) = (Q ◦ P) ◦ R = I ◦ R = R,
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where	we	make	repeated	use	of	Proposition 4.4.2. We	have	now	derived	that Q = R, which
is	a	logical	impossibility, because	we	assumed	thatQ and R were	distinct. The	only	way	out	of
this	problem	is	to	deduce	that P cannot	have	two	distinct	inverses, which	means	that	the	inverse
of P is	unique.
We	now	demonstrate	Parts (1)–(5)	of	the	proposition. These	demonstrations	are	all	based	on

the	same	idea, which	is	that	in	order	to	show	that	two	isometries	are	inverses, we	show	that	they
“cancel	each	other	out.”

(1). By	using	Proposition 4.4.2 (1), we	see	that I ◦ I = I. It	follows	that I−1 = I.

(2). Suppose	that Tv is	a	translation. Then	by	Proposition 4.6.2 it	follows	that

T−v ◦ Tv = Tv+(−v) = T0 = I.

A similar	argument	shows	that Tv ◦ T−v = I. We	deduce	that (Tv)
−1 = T−v.

(3). Suppose	that RA
α is	a	rotation. Then	by	Proposition 4.6.4 (1)	it	follows	that

RA
−α ◦ RA

α = RA
α+(−α) = RA

0 = I.

A similar	argument	shows	that RA
α ◦ RA

−α = I. We	deduce	that
(
RA
α

)−1
= RA

−α.

(4). Suppose	thatMn is	a	reflection. Then	by	Proposition 4.6.3 (1)	it	follows	thatMn ◦ Mn =
I. We	deduce	that (Mn)

−1 = Mn.

(5). Suppose	 that Gn,v is	a	glide	reflection. We	know	from	Proposition 4.5.1 that Gn,v =
Mn ◦ Tv and Gn,v = Tv ◦ Mn, and	similarly	for Gn,−v. We	now	compute	that

Gn,−v ◦ Gn,v = (Mn ◦ T−v) ◦ (Tv ◦ Mn) = Mn ◦ (T−v ◦ Tv) ◦ Mn

= Mn ◦ I ◦ Mn = Mn ◦ Mn = I,

where	 the	 third	equality	holds	by	Part (2)	of	 this	proposition, and	 the	fifth	equality	holds	by
Part (4). A similar	argument	shows	that Gn,v ◦ Gn,−v = I. We	deduce	that (Gn,v)

−1 = Gn,−v.
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Symmetry	of	Planar	Objects	and	Ornamental	Patterns

5.1 Basic	Ideas

Our	goal	in	this	chapter	is	to	apply	the	general	concept	of	mathematical	symmetry	to	the	study	of
ornamental	patterns. Such	patterns	can	be 1-dimensional, 2-dimensional	or 3-dimensional. An
example	of	a 1-dimensional	ornamental	pattern	is	a	string	of	beads; an	example	of	a 2-dimen-
sional	pattern	is	a	piece	of	wallpaper; an	example	of	a 3-dimensional	pattern	is	a	pile	of	cannon
balls. We	will	concentrate	on 2-dimensional	ornamental	patterns, that	 is, planar	ornamental
patterns. Such	patterns	are	quite	common	in	art, crafts, design	and	architecture, and	are	found
in	many	cultures	around	the	world. For	example, wallpaper	is	quite	common	in	European	cul-
ture; the	Muslim	tradition	uses	complicated	geometric	designs	in	their	buildings; various	African
peoples	use	repeating	patterns	in	their	art. (Symmetries	of	three	dimensional	objects	have	also
been	studied, but	are	much	more	complicated	than	in	the	planar	case, and	we	will	only	discuss
such	symmetry	very	briefly	in	Section 5.7.) A complete	study	of	planar	ornamental	patterns	in-
volves	some	fairly	advanced	mathematics, namely	group	theory	(which	we	will	discuss	briefly
in	Chapter 6, though	we	will	not	be	able	to	discuss	the	full	set	of	technicalities	needed	for	a
completely	rigorous	treatment	of	ornamental	patterns). Even	without	all	the	technical	tools	of
group	theory, however, we	can	examine	and	analyze	various	types	of	ornamental	symmetry.
Our	main	tool	in	the	study	of	symmetry	is	the	concept	of	isometry. In	Chapter 4 we	discussed

some	of	the	fundamental	properties	of	isometries	of	the	plane. As	we	viewed	things	in	Chapter 4,
the	plane	itself	was	blank, though	we	sometimes	drew	a	figure	(such	as	the	letter F)	on	it, in	order
to	see	what	happened	when	we	performed	an	isometry. Now, by	contrast, we	want	to	start	with
an	object	drawn	on	the	plane, and	then	analyze	the	symmetry	of	this	object	by	using	isometries.
By	the	term	“object” drawn	on	the	plane	we	simply	mean	a	collection	of	points	in	the	plane.
These	points	could	be	isolated	(as	in	Figure 5.1.1 (i)), or	could	form	a	geometric	figure	(as	in
Figure 5.1.1 (ii)), or	could	form	a	picture	(as	in	Figure 5.1.1 (iii)), or	could	form	anything	else.
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We	will	often	refer	to	an	object	drawn	in	the	plane	as	a	“planar	object” or	a	“planar	pattern;”
we	will	often	drop	the	adjective	“planar,” because	it	will	always	be	assumed	(except	for	a	few
cases, where	we	will	explicitly	say	that	we	are	looking	at	non-planar	objects). We	will	ignore
issues	of	color	 in	our	discussion	of	ornamental	patterns, and	will	consider	all	patterns	 to	be
“black”	points	on	a	transparent	plane.

(i)                                            (ii)                                         (iii)

Figure	5.1.1

Recall	our	informal	discussion	of	symmetry	in	Section 4.1, in	which	we	related	symmetry	to
the	notion	of	transformations	of	the	plane. Given	a	planar	object, a symmetry of	the	object	is
any	isometry	of	the	plane	that	carries	the	object	onto	itself. That	is, after	performing	the	isometry,
the	object	looks	just	as	it	did	before	the	isometry	was	performed. In	symbols, if K is	an	object
and P is	an	isometry	of	the	plane, then P is	a	symmetry	of K precisely	if P(K) = K; we	do
not	require	that P fixes	every	point	of K, but	only	that P takes	all	of K onto	itself. (Although	we
are	using	isometries	to	find	the	symmetry	of	a	given	object, we	stress	that	the	isometries	are, as
always, transformations	of	the	whole	plane, not	just	the	object.) Note	that	with	this	definition
of	 symmetry, we	use	 the	word	“symmetry”	as	a	noun	 (being	an	 isometry). We	are	 therefore
interested	in	whether	an	object	has	symmetries, not	in	whether	it	is	“symmetric,” as	would	be
used	more	colloquially.
Suppose, for	example, that	our	object	is	the	rectangle	shown	in	Figure 5.1.2 (i). Reflection	in

a	vertical	line	through	the	center	of	the	rectangle	is	an	isometry	that	has	the	rectangle	land	on
itself; we	denote	this	vertical	line	by L1, and	the	reflection	in	that	line	byM1. Similarly, reflection
in	a	horizontal	line	through	the	center	of	the	rectangle	is	an	isometry	that	has	the	rectangle	land
on	itself; we	denote	this	line	by L2, and	the	reflection	in	this	line	by M2. See	Figure 5.1.2 (ii).
Rotation	by 180◦ about	the	center	of	the	rectangle	is	an	isometry	that	has	the	rectangle	land
on	itself; we	denote	this	rotation	by R1/2. Are	these	the	only	symmetries	of	the	rectangle? Not
quite. There	is	one	more	symmetry, namely	the	identity	isometry. These	four	isometries, namely
I, R1/2, M1 and M2 are	all	the	symmetries	of	the	rectangle.

Let	us	look	at	the	symmetries	of	some	other	objects, starting	with	the	object	shown	in	Fig-
ure 5.1.3 (i). The	symmetries	of	this	figure	are I, R1/3 and R2/3. Hence, comparing	this	object
with	the	rectangle, we	see	that	different	objects	can	have	different	collections	of	symmetries.
On	the	other	hand, consider	the	letterH shown	in	Figure 5.1.3 (ii). Observe	that	the	letterH has
precisely	the	same	four	symmetries	as	the	rectangle, namely I, R1/2, M1 and M2. We	there-
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(i)                                            (ii)     

L1

L2

Figure	5.1.2

fore	see	that	two	different	objects	can	have	the	same	symmetries. From	a	design	point	of	view,
clearly	the	rectangle	and	the	letter H are	different. From	a	symmetry	point	of	view, however,
they	are	the	same. Both	points	of	view	are	worth	considering, though	our	concern	in	this	text	is,
needless	to	say, symmetry, not	design. Finally, consider	the	object	shown	in	Figure 5.1.3 (iii).
Colloquially, we	might	say	that	this	object	“is	not	symmetric.” While	expressing	a	valid	senti-
ment, such	a	statement	is	not	accurate	from	our	mathematical	perspective. The	object	shown	in
Figure 5.1.3 (iii)	does	in	fact	have	a	symmetry, namely	the	identity	isometry I (every	object	has
I as	a	symmetry). That	the	object	appears	to	be	“not	symmetric” is	expressed	precisely	by	the
fact	that I is	the	only	symmetry	of	the	object.

(i)                                         (ii)                                         (iii)

H
Figure	5.1.3

We	have	just	listed	all	the	symmetries	of	a	few	different	objects. In	principle	it	is	possible	to
list	all	 the	symmetries	of	any	object. Some	objects	have	infinitely	many	symmetries	(we	will
see	examples	shortly), so	we	cannot	in	practice	make	a	list	of	all	the	symmetries	of	every	ob-
ject. However, we	can	still	collect	all	the	symmetries	of	an	object	in	theory, even	if	we	cannot
explicitly	list	them. Any	object	has	at	least	one	symmetry, namely I, and	so	the	collection	of
symmetries	of	any	object	does	indeed	exist. We	call	the	collection	of	all	symmetries	of	an	object
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the symmetry	group of	the	object. The	word	“group” used	here	does	not	simply	mean	a	col-
lection	of	things, but	is	used	in	its	technical	mathematical	meaning. The	mathematical	concept
of	a	“group,” discussed	in	Chapter 6, is	part	of	the	mathematical	field	of	abstract	algebra, and
has	many	uses	beyond	just	the	study	of	symmetry. Groups	have	been	widely	studied	by	math-
ematicians, and	some	facts	from	the	theory	of	groups	can	be	used	to	obtain	rather	surprising
results	about	the	symmetries	of	objects	such	as	frieze	patterns	and	wallpaper	patterns	(discussed
in	Sections 5.5 and	5.6 respectively).
Using	our	previous	examples, we	see	that	the	symmetry	group	of	the	rectangle	shown	in	Fig-

ure 5.1.2 (i)	is {I, R1/2,M1,M2}, and	the	symmetry	group	of	the	object	shown	in	Figure 5.1.3 (i)
is {I, R1/3, R2/3}. Any	symmetry	group	contains	at	least	one	symmetry	in	it, namely	the	identity
isometry. An	object	that	would	be	described	colloquially	as	having	“no	symmetry,” such	as	the
object	shown	in	Figure 5.1.3 (iii), has	a	symmetry	group	that	contains	precisely	one	symmetry,
namely	the	identity	isometry.

Exercise 5.1.1. For	each	of	the	objects	shown	in	Figure 5.1.4, list	all	symmetries.

(i)                                            (ii)                                         (iii)

(iv)                                         (v) 

Figure	5.1.4

We	know	by	Proposition 4.6.1 that	any	isometry	of	the	plane	is	a	translation, a	rotation, a
reflection	or	a	glide	reflection. Hence, any	symmetry	of	an	object	is	one	of	these	four	types.
To	save	verbiage, when	an	object	has	a	symmetry	that	is	a	non-trivial	translation, we	will	refer
to	 it	as	a translation	symmetry of	 the	object; when	an	object	has	a	symmetry	 that	 is	a	non-
trivial	rotation, we	will	refer	to	it	as	a rotation	symmetry of	the	object; when	an	object	has	a



5.1	Basic	Ideas 151

symmetry	that	is	a	reflection, we	will	refer	to	it	as	a reflection	symmetry of	the	object; when
an	object	has	 a	 symmetry	 that	 is	 a	non-trivial	 glide	 reflection, we	will	 refer	 to	 it	 as	 a glide
reflection	symmetry of	the	object. When	we	are	looking	at	the	symmetries	of	an	object, we	will
refer	to	the	identity	isometry	as	the identity	symmetry of	the	object. For	example, the	object	in
Figure 5.1.3 (i)	has	rotation	symmetry	but	no	reflection	symmetry; the	object	in	Figure 5.1.3 (ii)
has	both	rotation	and	reflection	symmetry. We	note	that	objects	that	have	translation	symmetry
or	glide	reflection	symmetry	have	to	“go	on	forever.” In	Figure 5.1.5 (i)	we	see	an	object	that, if
we	assume	it	continues	indefinitely	in	both	directions, has	translation	symmetry. On	the	other
hand, just	because	an	object	“goes	on	forever”	does	not	mean	it	automatically	has	translation
symmetry; see	Figure 5.1.5 (ii). We	will	see	further	examples	of	translation	symmetry	and	glide
reflection	symmetry	in	Sections 5.5 and	5.6.

. . . F  F  F  F  F  F . . . . . . 1 2 3 4 5 6 . . .   
(i)                                                                    (ii)   

Figure	5.1.5

We	will	need	some	additional	terminology. If	an	object	has	a	translation	symmetry, then	we
can	look	at	the	translation	vector	of	this	translation	symmetry, and	we	refer	to	this	translation
vector	as	a translation	vector	of	the	object. If	an	object	has	a	rotation	symmetry, then	we	can
look	at	the	center	of	rotation	of	this	rotation	symmetry, and	we	refer	to	this	center	of	rotation	as
a center	of	rotation	of	the	object. A center	of	rotation	of	a	planar	object	might	be	the	center	of
rotation	for	rotations	of	the	object	by	various	angles. If	an	object	has	a	reflection	symmetry, then
we	can	look	at	the	line	of	reflection, and	we	refer	to	this	line	of	reflection	as	a line	of	reflection
of	the	object. If	an	object	has	a	glide	reflection	symmetry, then	we	can	look	at	the	line	of	glide
reflection, and	we	refer	to	this	line	of	glide	reflection	as	a line	of	glide	reflection	of	the	object.
We	see, therefore, that	a	given	planar	object	might	or	might	not	have	certain	distinguished

points	that	are	centers	of	rotations, and	it	might	or	might	not	have	certain	distinguished	lines,
some	of	which	might	be	lines	of	reflection, and	some	lines	of	glide	reflection.

Exercise 5.1.2. For	each	of	the	objects	shown	in	Figure 5.1.6, find	and	indicate	the	centers
of	rotation	and	the	lines	of	reflection.
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(i)                                            (ii)                                         (iii)

(iv)                                         (v) 

Figure	5.1.6

Exercise 5.1.3. The	following	questions	involve	words	in	English	written	in	capital	letters.
Assume	that	all	letters	are	as	symmetric	as	possible, and	that	W is	obtained	from	M by 180◦

rotation.

(1) Find	four	words	that	have	a	horizontal	line	of	reflection. Find	the	longest	such	word
you	can	think	of.

(2) Find	one	or	more	words	that	have	a	vertical	line	of	reflection. Find	the	longest	such
word	you	can	think	of.

(3) Find	one	or	more	words	that	have	a 180◦ rotation	symmetry. Find	the	longest	such
word	you	can	think	of.

Now	that	we	have	the	notion	of	translation	vectors, centers	of	rotations, lines	of	reflection
and	lines	of	glide	reflection	of	an	object, we	can	state	the	following	technical	result	about	how
these	distinguished	vectors, points	and	lines	are	treated	by	symmetries	of	the	object. We	will
use	this	result	later, when	we	study	the	symmetries	of	certain	types	of	planar	objects. This	result
should	not	be	surprising, because	what	it	says	intuitively	is	that	a	symmetry	of	an	object	takes
special	kinds	of	vectors, points	and	lines	to	the	same	kinds	of	vectors, points	and	lines, which
is	reasonable	given	that	a	symmetry	of	an	object	leaves	the	object	looking	unchanged. We	omit
the	proof	of	this	proposition.

Proposition 5.1.1. Suppose	that P is	a	planar	object, and	let S be	a	symmetry	of P.



5.1	Basic	Ideas 153

1. If X is	a	center	of	rotation	of P, then S(X) is	a	center	of	rotation	of P.

2. If m is	a	line	of	reflection	of P, then S(m) is	a	line	of	reflection	of P.

3. If m is	a	line	of	glide	reflection	of P, then S(m) is	a	line	of	glide	reflection	of P.

4. If v is	a	translation	vector	of P, then S(v) is	a	translation	vector	of P.

A key	idea	in	the	study	of	symmetry	is	that	we	can	do	more	with	symmetries	than	simply	list
the	symmetries	of	each	object. Given	two	symmetries	of	an	object, which	are	both	isometries	of
the	plane, we	can	form	the	composition	of	these	two	symmetries	(as	discussed	in	Section 4.4),
to	obtain	a	new	isometry	of	the	plane. What	makes	this	whole	study	of	symmetries	work	from	a
mathematical	perspective	is	that	the	composition	of	two	symmetries	of	an	object	is	in	fact	also
a	symmetry	of	the	object. We	now	formulate	this	fact	more	precisely.

Proposition 5.1.2. Suppose	that P and Q are	symmetries	of	a	given	object.

1. Q ◦ P is	a	symmetry	of	the	object.

2. P−1 is	a	symmetry	of	the	object.

Demonstration. Suppose	 that	 the	object	 for	which P and Q are	symmetries	 is	called K. By
definition	of	what	it	means	to	be	a	symmetry	of	an	object, we	know	that P andQ are	isometries,
and	that P(K) = K and Q(K) = K.

(1). Because P and Q are	both	isometries, we	know	from	Proposition 4.4.1 that Q ◦ P is	an
isometry. We	also	observe	that (Q ◦ P)(K) = Q(P(K)) = Q(K) = K. It	follows	that Q ◦ P

is	a	symmetry	of K.

(2). Because P is	an	isometry, we	know	from	Proposition 4.6.5 that P has	an	inverse	isometry
P−1. Additionally, we	know	that P−1 ◦ P = I, which	means	that P−1(P(K)) = I(K). Because
P(K) = K and I(K) = K (the	latter	because I is	the	identity	isometry, which	takes	every	object
onto	itself), it	follows	that P−1(K) = K. It	follows	that P−1 is	a	symmetry	of K.

We	note	that	it	is	this	ability	to	combine	symmetries	that	makes	the	approach	to	symmetry	via
isometries	the	one	that	is	particularly	suited	to	a	mathematical	treatment, and	it	is	the	mathe-
matical	analysis	of	symmetry	that	leads	to	the	interesting	results	about	symmetry	that	we	will	see
later	in	this	chapter. If	we	think	of	the	word	“symmetry”	in	the	colloquial	usage	as	an	attribute
of	an	object, therefore	being	an	adjective	rather	than	a	noun, then	we	could	not	meaningfully
combine	symmetries.
Our	goal	in	this	chapter	is	to	explore	the	symmetries	of	planar	objects. The	most	basic	thing

to	do	is	to	look	at	all	possible	symmetries	of	each	given	object, that	is, the	symmetry	group	of
the	object. Because	symmetries	are	isometries, we	can	use	our	knowledge	of	isometries	to	learn
more	about	the	object. In	this	section	we	have	discussed	some	general	ideas	about	symmetries
of	objects. In	subsequent	sections	in	this	chapter, we	will	restrict	our	attention	to	various	special
types	of	planar	objects, and	in	each	restricted	case, we	will	be	able	to	say	more	definitive	results.
Actually, if	all	we	could	do	would	be	to	take	a	planar	object, and	find	its	symmetry	group,

that	would	be	nice, but	not	very	interesting. What	would	be	more	interesting	would	be	to	know
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whether	we	could	find	all	possible	types	of	symmetry	groups	that	a	planar	object	could	have.
An	analogy	might	be	with	bird	watching. We	cannot	list	all	possible	individual	birds	found	in
a	given	region, but	bird	watching	guides	list	all	possible	types	of	birds	that	can	be	found	in	the
region, and	describe	various	characteristics	(for	example, color, shape	of	beak, etc.) that	can
be	used	to	identify	the	type	of	any	bird	spotted	in	the	wild. Similarly, we	certainly	cannot	list
all	possible	objects	that	could	ever	be	drawn	in	the	plane, because	there	are	infinitely	many
different	things	that	can	be	pictorially	represented. However, and	this	is	rather	remarkable, in
three	important	categories	of	planar	ornamental	patterns	(which	between	them	encompass	many
of	the	ornamental	patterns	of	interest), we	can	list	all	possible	types	of	symmetry	groups	that	can
arise	for	each	each	category. The	three	categories	of	planar	patterns	we	will	discuss	are	rosette
patterns, frieze	patterns, and	wallpaper	patterns, which	will	be	treated	in	detail	in	Sections 5.4,
5.5 and	5.6 respectively. Our	discussion	of	isometries	in	Chapter 4, and	our	general	discussion
of	symmetry	groups	in	this	section, is	essentially	aimed	at	providing	us	the	tools	to	understand
the	classification	of	symmetry	groups	of	rosette	patterns, frieze	patterns	and	wallpaper	patterns.
(It	would	be	beyond	the	scope	of	this	book	to	provide	all	the	technical	mathematical	details
for	various	proofs	needed	for	the	analysis	of	frieze	patterns	and	wallpaper	patterns, but	we	will
be	able	to	give	all	the	details	for	rosette	patterns, and	many	of	the	key	ideas	for	the	other	two
cases.)
In	order	to	make	headway	with	the	idea	of	classifying	objects	by	their	symmetries, we	need

to	ask	what	it	would	take	in	order	to	be	able	to	say	that	two	objects	“have	the	same	type	of
symmetry”? We	saw	an	example	earlier	in	this	section, namely	the	rectangle	and	the	letter H,
where	two	different	objects	have	the	same	symmetry	groups. In	general, we	will	say	that	two
objects	have	the	same symmetry	type if	they	have	the	same	symmetry	groups. That	is, if	we	can
match	up	the	translations	in	one	symmetry	group	with	the	translations	of	the	other, the	rotations
in	one	symmetry	group	with	the	rotations	of	the	other, and	similarly	for	reflections	and	for	glide
reflections. (For	those	familiar	with	the	theory	of	groups, it	is	not	sufficient	simply	to	require	that
the	two	symmetry	groups	be	isomorphic; it	is	necessary	to	have	an	isomorphism	between	the
two	groups	that	takes	translations	to	translations, rotations	to	rotations, reflections	to	reflections
and	glide	reflections	to	glide	reflections. For	those	not	familiar	with	the	theory	of	groups, do	not
worry	about	these	technicalities.)

5.2 Symmetry	of	Regular	Polygons	I

In	order	to	get	a	feel	for	symmetry	groups, we	start	with	the	symmetry	groups	of	regular	polygons.
Let	us	examine	the	symmetries	of	an	equilateral	triangle, as	shown	in	Figure 5.2.1. Notice	in	the
figure	that	we	labeled	the	vertices	of	the	triangle	byA, B and C. These	labels	are	not	part	of	the
triangle, but	are	there	simply	to	help	us	see	the	effects	of	various	symmetries	on	the	triangle.

The	first	 thing	we	want	to	do	is	 to	list	all	symmetries	of	 the	equilateral	 triangle, that	 is, all
isometries	of	the	plane	that	have	the	triangle	land	on	itself. It	is	permissible	that	these	isometries
interchange	the	letters	used	to	label	the	vertices, because	these	letters	are	not	actually	part	of
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A

C B

Figure	5.2.1

the	 triangle, and	are	only	used	to	help	us	keep	track	of	what	 is	going	on. For	example, one
permissible	 isometry	 is	reflection	in	 the	vertical	 line	through	the	middle	of	 the	triangle. This
reflection	leaves	the	triangle	looking	the	same, though	it	interchanges	vertices B and C (leaving
A unmoved). You	might	find	it	helpful	at	this	point	to	cut	an	equilateral	triangle	out	of	paper,
label	the	vertices	as	in	Figure 5.2.1, and	perform	the	isometries	we	will	discuss. Unless	you	have
transparent	paper, it	helps	to	write	on	both	sides	of	the	triangle	when	you	first	label	the	vertices.
The	triangle	cannot	have	any	translation	symmetry	or	glide	reflection	symmetry, because	any

translation	or	glide	reflection	of	the	plane	would	move	the	triangle	off	itself. The	triangle	can
therefore	have	only	rotation	symmetry	and	reflection	symmetry. What	we	need	to	find	are	the
various	lines	of	reflection	of	the	triangle, and	the	various	centers	of	rotation	and	angles	of	rotation
of	 the	 triangle. In	Figure 5.2.2 are	 indicated	 the	 three	 lines	about	which	 the	 triangle	can	be
reflected	without	changing	its	appearance; these	three	lines	are	denoted L1, L2 and L3. The
reflections	through	these	lines	are	denoted M1, M2 and M3 respectively. For	example, if	we
applyM2 to	the	triangle	as	pictured	in	Figure 5.2.1, we	see	thatM2 leaves	the	vertex	labeled B
unmoved, and	interchanges	the	vertices	labeled A and C; see	Figure 5.2.3. Note	that	the	lines
L1, L2 and L3 are	not	part	of	the	triangle, but	rather	are	fixed	reference	lines; they	never	move.

L1

L3

L2

Figure	5.2.2
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A

C B

C

A B

M2

Figure	5.2.3

The	identity	isometry, denoted I, is	certainly	a	symmetry	of	the	triangle. There	are	only	two
non-identity	 rotations	 that	 leave	 the	 triangle	 looking	unchanged: rotation	by 120◦ clockwise
about	the	center	of	the	triangle, and	rotation	by 240◦ clockwise	about	the	center	of	the	triangle.
What	about	rotation	by 120◦ or 240◦ counterclockwise	about	the	center	of	the	triangle? These
are	certainly	symmetries	of	the	triangle, but	rotation	by 120◦ counterclockwise	has	the	same
net	effect	as	rotation	by 240◦ clockwise, and	similarly	rotation	by 240◦ counterclockwise	has
the	same	net	effect	as	rotation	by 120◦ clockwise. As	always, we	are	only	interested	in	the	net
effect	of	an	isometry, and	so	it	would	be	redundant	to	use	both	counterclockwise	and	clockwise
rotations; we	will	stick	to	the	clockwise	ones. It	is	easier	to	think	of	rotations	by	fractions	of	whole
turns, rather	 than	degrees, so	we	will	write R1/3 and R2/3 to	denote	 the	clockwise	rotations
by 120◦ and 240◦ respectively. For	example, if	we	apply R1/3 to	 the	 triangle	as	pictured	 in
Figure 5.2.1, we	see	that R1/3 takes	the	vertex	labeledA to	where	vertex Bwas, takes	the	vertex
labeled B to	where	vertex C was, and	takes	the	vertex	labeled C to	where	vertex A was; see
Figure 5.2.4.

We	now	have	a	complete	list	of	all	symmetries	of	the	equilateral	triangle, namely I, R1/3, R2/3,
M1,M2 andM3. This	list	is	the	symmetry	group	of	the	equilateral	triangle; we	letG denote	this
list. Our	next	step	is	to	see	how	the	symmetries	in	this	list	can	be	combined	via	composition.
Using	Proposition 5.1.2 (1), we	know	in	principle	that	if	we	take	any	two	symmetries	inG, then
their	composition	will	also	be	in G. Consider	the	following	example. We	know	that M1 and
R1/3 are	symmetries	of	the	triangle, and	soM1 ◦ R1/3 must	also	be	a	symmetry	of	the	triangle.
Hence M1 ◦ R1/3 must	be	in G. Which	of	the	six	members	of G is	it	equal	to? The	key	point
is	that M1 ◦ R1/3, though	formed	in	two	stages, has	a	single	net	effect, and	it	is	this	net	effect
that	equals	the	net	effect	of	precisely	one	of	the	six	members	of G. Recall	that	the	composition
M1 ◦ R1/3 means	first	doing R1/3 and	then	doing M1. In	Figure 5.2.5 we	see	the	net	effect
of	performing	 the	 two	 isometries	 in	 the	specified	order. It	 is	 important	 to	 recognize	 that	 the
transformation M1 always	refers	to	a	reflection	in	the	line L1 exactly	as	shown	in	Figure 5.2.2,
no	matter	what	had	been	done	to	the	triangle	previously. (The	lines L1, L2 and L3 are	not	parts
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A

C B

C

B A

R1/3

Figure	5.2.4

of	the	triangle, and	do	not	move	when	we	rotate	the	plane; we	always	wantM1,M2 andM3 to
mean	the	same	things	at	all	times.) An	examination	of	Figure 5.2.5 reveals	thatM1 ◦ R1/3 leaves
the	vertex	originally	labeled B unmoved, and	it	interchanges	the	vertices	originally	labeled A

and C. Hence, the	net	effect	of M1 ◦ R1/3 is	exactly	the	same	as	the	net	effect	of M2. We
therefore	can	write	the	equation M1 ◦ R1/3 = M2.

M1R1/3

A

C B

C

A B

C

B A

M1  °   R1/3  =  M2

Figure	5.2.5

We	can	compose	any	member	ofGwith	any	member	ofG, and	the	result	will	be	a	member	of
G. We	can	summarize	all	possible	compositions	of	members	ofG by	constructing	a	“multiplica-
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tion”	table forG, which	is	the	analog	of	the	multiplication	tables	we	learn	in	elementary	school;
we	will	call	such	a	table	a composition	table. The	composition	table	for	the	equilateral	triangle
is	shown	in	Table 5.2.1. If P and Q are	members	of G, we	find Q ◦ P in	the	table	by	looking
at	the	entry	located	in	the	row	containingQ and	the	column	containing P. For	example, to	find
R2/3 ◦ M3, we	look	at	the	entry	located	in	the	row	containing R2/3 and	the	column	containing
M3; this	square	contains M1. Hence R2/3 ◦ M3 = M1. The	way	we	obtained	the 36 entries
in	the	table	was	simply	by	directly	calculating	each	one; these	calculations	can	be	done	either
by	making	drawings	similar	to	what	is	shown	in	Figure 5.2.5, or	by	using	a	cut-out	equilateral
triangle. (We	will	learn	a	more	efficient	way	to	construct	this	operation	table	in	Section 5.3.)

◦ I R1/3 R2/3 M1 M2 M3

I I R1/3 R2/3 M1 M2 M3

R1/3 R1/3 R2/3 I M3 M1 M2

R2/3 R2/3 I R1/3 M2 M3 M1

M1 M1 M2 M3 I R1/3 R2/3

M2 M2 M3 M1 R2/3 I R1/3

M3 M3 M1 M2 R1/3 R2/3 I

.

Table	5.2.1

A number	of	things	can	be	seen	in	Table 5.2.1. First, the	table	is	clearly	subdivided	into	four
3× 3 squares, two	of	which	only	have	rotations	(thinking	of I as	a	rotation), and	the	other	two
having	only	reflections. There	is	a	nice	diagonal	pattern	in	each	of	the	four	squares. Also, note
that	each	of	 the	six	members	of G appears	once	and	only	once	in	each	row, and	once	and
only	once	in	each	column. We	also	see	in	the	table	that	the	order	of	composition	of	symmetries
matters. For	example, it	is	seen	in	the	table	thatM1 ◦ R1/3 = M2 , whereas R1/3 ◦ M1 = M3.
Hence M1 ◦ R1/3 ̸= R1/3 ◦ M1.
One	final	point	regarding	the	symmetries	of	the	equilateral	triangle. In	Section 4.6 we	dis-

cussed	the	notion	of	an	inverse	isometry. By	Proposition 5.1.2 (2), we	know	that	the	inverse
isometry	of	each	symmetry	of	 the	equilateral	 triangle	 is	also	a	symmetry	of	 the	 triangle. We
can	state	very	explicitly	what	the	inverse	of	each	symmetry	of	the	triangle	is	by	using	Proposi-
tion 4.6.5. More	precisely, we	have I−1 = I, R1/3

−1 = R2/3, R2/3
−1 = R1/3 M1

−1 = M1,

M2
−1 = M2 and M3

−1 = M3.
Everything	that	we	have	discussed	concerning	the	equilateral	triangle	works	similarly	for	any

regular n-gon. Just	as	we	have	three	rotations	(including	the	identity)	and	three	reflections	for
the	triangle, yielding	a	total	of	six	symmetries, similarly	a	regular n-gon	has n rotations	and n

reflections, yielding	a	total	of 2n symmetries. The	smallest	rotation	of	a	regular n-gon	is R1/n,
and	all	other	rotations	are	multiples	of	this	rotation. For	example, the	square	will	have	symmetry
group	with	members I, R1/4, R1/2, R3/4,M1,M2,M3 andM4, where	the	four	reflections	have
lines	of	reflection	as	shown	in	Figure 5.2.6. The	symmetries	of	a	regular n-gon	are:

I, R1/n, R2/n, R3/n, . . . , R(n−1)/n,M1,M2,M3,M4, . . . ,Mn.
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It	does	not	make	any	substantial	difference	how	the	lines	of	reflection	for	a	regular	polygon
are	arranged, but, for	uniformity	(and	later	convenience), we	will	always	assume	that	they	are
arranged	as	in	Figure 5.2.6, namely	with L1 vertical, and	the	others	in	counterclockwise	order
(this	order	will	turn	out	to	be	useful	in	Section 5.3). We	can	form	the	composition	table	for	the
symmetry	group	of	each	regular n-gon, analogously	to	Table 5.2.1. The	patterns	that	we	saw	in
the	table	for	the	equilateral	triangle	also	hold	for	other	regular n-gons.

L1

L3

L4

L2

Figure	5.2.6

Exercise 5.2.1. List	all	the	symmetries	of	a	regular	pentagon, and	of	a	regular	hexagon.

Exercise 5.2.2. Construct	 the	composition	 table	 for	 the	symmetry	group	of	 the	square.
Use	lines	of	reflection	labeled	as	in	Figure 5.2.6. Calculate	each	entry	in	the	table	directly;
do	not	simply	copy	 the	pattern	of	Table 5.2.1. (The	point	of	 this	exercise	is	 to	verify	by
actual	calculation	that	the	composition	table	for	the	square	has	the	same	pattern	as	for	the
equilateral	triangle.)
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Exercise 5.2.3. For	the	regular	octagon, compute	the	following	symmetries	(that	is, express
each	as	a	single	symmetry).

(1) R1/8 ◦ R3/8;

(2) R1/4 ◦ R5/8;

(3) R1/8 ◦ M3;

(4) M1 ◦ M5;

(5) (M6)
−1;

(6) (R3/8)
−1.

5.3 Symmetry	of	Regular	Polygons	II

Suppose	that	we	wanted	to	compute R1/3 ◦ M3 ◦ M2 ◦ R1/3 ◦ M1 for	an	equilateral	triangle.
Using	the	method	of	Section 5.2, we	could	either	do	it	directly	by	drawing	a	triangle	and	doing
each	isometry	one	at	a	 time, or	we	could	use	 the	composition	 table	given	 in	Table 5.2.1 to
compute	the	composition	of	the	first	two	isometries, then	the	composition	of	the	result	with	the
next	isometry, and	so	on. Either	way, it	would	be	a	slightly	tedious	calculation, though	we	could
do	it.
Now	suppose	we	wanted	to	compute R1/20 ◦ M17 ◦ M53 ◦ R3/100 ◦ M1 for	a	regular

100-gon. In	principle	we	could	use	the	method	of	Section 5.2, but	in	practice	it	would	be	so
tedious	that	no	one	would	want	to	do	it, because	drawing	a 100-gon	would	be	very	difficult,
and	making	a	composition	table	for	a 100-gon	would	take	a	long	time.
In	this	section	we	present	an	alternative	approach	to	the	material	we	discussed	in	Section 5.2,

and	this	alternative	approach	will	allow	us	to	do	calculations	for	a	regular 100-gon	just	as	easily
as	we	do	for	an	equilateral	triangle. Instead	of	figuring	out	compositions	of	symmetries	directly,
we	develop	an	“algebra”	of	symmetries	of	regular	polygons. Not	only	will	it	be	easier	to	fill	in
tables	similar	to	Table 5.2.1 once	we	have	the	algebraic	approach, but	we	will	see	that	essentially
the	same	rules	work	for	all	regular n-gons.
To	start, we	want	 to	express	all	 the	symmetries	of	a	regular n-gon	in	terms	of	a	 few	basic

symmetries. These	basic	symmetries	will	be	sort	of	like	atoms, out	of	which	all	other	symmetries
are	built. No	matter	what	the	value	of n is, we	will	always	use	the	same	three	symmetries	as	our
building	blocks. In	order	to	distinguish	the	algebraic	approach	of	this	section	from	the	geometric
approach	of	Section 5.2, we	will	adopt	a	different	notation, which	 looks	more	 like	algebra.
(However, what	we	are	doing	here	is	not	the	same	as	the	algebra	we	learn	in	school—that	deals
with	numbers, whereas	here	we	are	dealing	with	symmetries. Numbers	and	symmetries	do	not
behave	exactly	the	same.)
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Suppose	we	have	a	regular n-gon	for	some n. First, we	let 1 denote	the	identity	symmetry,
previously	denoted	by I. Next, let r denote	the	smallest	possible	non-trivial	clockwise	rotation
symmetry, previously	denoted R1/n. For	example, in	 the	case	of	 the	equilateral	 triangle, we
will	have r = R1/3; in	the	case	of	the	square, we	will	have r = R1/4. Hence, the	symbol r
denotes	rotation	by	a	different	angle	for	each	different	regular	polygon. In	all	cases, however,
we	know	that r is	the	smallest	possible	non-trivial	clockwise	rotation	symmetry. Third, let m
denote	reflection	in	a	vertical	line, previously	denoted M1. (It	would	work	just	as	well	to	let
m be	any	other	reflection	symmetry, but	we	will	always	choose	reflection	in	a	vertical	 line,
so	that	there	will	be	no	ambiguity	about	which	reflection	is	referred	to	by m.) Last, instead	of
writing	composition	using	the	symbol ◦, we	will	simply	use	the	standard	algebraic	notation	for
multiplication	to	denote	composition. Hence, what	we	used	to	write	as M1 ◦ R1/n we	now
denote mr.
We	can	use	some	 further	 standard	algebraic	notation	as	well. To	start, if k is	any	positive

integer, we	will	 let rk mean	the	product	of r with	itself k times. Note	that r1 = r. We	will
let r−1 denote R−1/n, that	 is, the	 smallest	 possible	 counterclockwise	 rotation	of	 the n-gon.

For	convenience, again	following	standard	algebraic	practice, we	will	let r0 = 1, and	for	any
positive	integer k, we	will	let r−k = (r−1)k. The	same	sort	of	notation	applies	to	expressions	of
the	form mk.
It	turns	out	that	we	can	rewrite	all	the	other	symmetries	of	a	regular n-gon	using	the	three

symmetries 1, r and m. Let	us	start	with	the	equilateral	triangle, before	stating	the	result	more
generally. In	the	notation	we	used	in	Section 5.2, the	symmetries	of	the	equilateral	triangle	are
I, R1/3, R2/3, M1, M2 and M3. (It	is	important	for	what	follows	that	the	lines	for	these	three
reflections	be	as	pictured	in	Figure 5.2.2.) We	have	already	seen	that I = 1, that R1/3 = r,

and	that M1 = m. It	is	straightforward	to	verify	that R2/3 = R1/3
2 = r2. What	about M2 and

M3? We	proceed	as	follows. In	Table 5.2.1 we	saw	that M1 ◦ M2 = R1/3. Hence	we	obtain
M1 ◦ M1 ◦ M2 = M1 ◦ R1/3. We	know	that M1 ◦ M1 = I (by	Proposition 4.6.5 (4)),
and	it	therefore	follows	that M2 = M1 ◦ R1/3. Switching	to	our	new	notation, we	see	that

M2 = mr. A similar	calculation	shows	that M3 = mr2; the	reader	is	asked	to	supply	the
details. (Alternatively, we	could	have	taken	an	equilateral	triangle, and	directly	verified	as	we
did	in	Section 5.2 that	the	composition mr has	the	same	net	effect	as M2, and	similarly	for
mr2 and M3.) We	could	also	have	expressed M2 as r2m, and M3 as rm, but	for	the	sake	of
uniformity	we	will	always	keep	the	letterm on	the	left	and	the	letter r on	the	right. All	told, the
six	symmetries	of	the	equilateral	triangle	can	be	written	as 1, r, r2, m,mr and mr2.
A similar	calculation	would	show	that	the	eight	symmetries	of	the	square	can	be	written	as

1, r, r2, r3, m, mr, mr2 and mr3. The	same	pattern	holds	 for	a	 regular n-gon, where	 the
complete	list	of	symmetries	in	our	new	notation	is	as	follows:

Geometric	notation I R1/n R2/n · · · R(n−1)/n M1 M2 M3 · · · Mn

Algebraic	notation 1 r r2 · · · rn−1 m mr mr2 · · · mrn−1
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Once	again, we	stress	that	the	above	equalities	hold	exactly	as	written	only	if	we	assume	that	the
lines	or	reflection	are	arranged	as	in	Figure 5.2.6, namely	with	the	lines	of	reflection	arranged
consecutively	in	counterclockwise	order.
Now	 that	we	know	how	 to	write	our	 symmetries	 in	 terms	of 1, r and m, we	 turn	 to	 the

composition	of	symmetries. In	Section 5.2, we	computed	the	composition	of	two	symmetries
geometrically, by	seeing	the	effect	on	then-gon	of	each	of	the	two	isometries	performed	one	after
the	other. For	example, in	the	case	of	the	equilateral	triangle, we	computed M1 ◦ R1/3 = M2

as	shown	in	Figure 5.2.5, where	we	see	the	two	isometries	performed	in	the	specified	order.
Though	straightforward, such	geometric	computations	are	quite	tedious, and	are	also	prone	to
error. However, because	all	symmetries	of	the	regularn-gon	have	now	been	rewritten	in	terms	of
1, r andm, once	we	can	figure	out	how	to	compose	these	three	basic	symmetries, we	will	then
have	a	quick	method	for	composing	any	two	symmetries	of	then-gon. The	following	proposition
lists	some	of	the	most	of	the	basic	rules	for	combining 1, r and m.

Proposition 5.3.1. Let 1, r and m be	defined	as	above	for	a	regular n-gon.

1. r · 1 = r and r = 1 · r;
2. m · 1 = m and m = 1 ·m;

3. rarb = ra+b;

4. mamb = ma+b;

5. meven = 1 and modd = m, where even denotes	any	even	number, and odd denotes
any	odd	number;

6. rn = 1.

Demonstration.

(1). These	two	equalities	are	clear, because 1 is	simply	another	notation	for	the	identity	isom-
etry I, and	we	can	apply	Proposition 4.4.2 (1).

(2). This	is	similar	to	Part (1).

(3). Recall	 that ra means	 the	product	of r with	 itself a times, and	similarly rb means	 the
product	of r with	itself b times. Hence, we	see	that rarb means	the	product	of r with	itself
b+ a times, which	is	the	same	as a+ b times. Because ra+b also	means	the	product	of r with
itself a+ b times, we	deduce	that rarb = ra+b.

(4). This	is	similar	to	Part (3).

(5). Recall	that m is	a	reflection	of	the	plane. It	then	must	be	the	case	that m2 = 1, which
is	just	a	restatement	in	our	current	notation	of	Proposition 4.6.3 (1). If even denotes	a	positive
even	number, then meven = m2m2m2 · · ·m2 = 1. If odd denotes	a	positive	odd	number,
then modd = m2m2m2 · · ·m2m = m. A similar	argument	holds	for	negative	even	and	odd
numbers.
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(6). Recall	that r is	just	another	notation	for R1/n. It	follows	from	Proposition 4.6.4 (1)	that
composing R1/n with	itself n times	is	the	same	as	a 360◦ rotation, which	equals	the	identity
isometry.

Notice	that	Rules (1)–(4)	in	the	above	proposition	are	just	like	standard	algebraic	rules	for	num-
bers, whereas	Rules (5)–(6)	are	not	at	all	like	the	standard	rules	for	numbers. Hence, although
our	notation	using 1, r and m is	reminiscent	of	standard	algebra, it	is	not	the	same	as	it. We
should	always	keep	in	mind	that	the	symbols 1, r andm as	used	here	are	short-hand	notations
for	various	isometries	of	the	plane, and	do	not	denote	numbers. Notice	also	that	Rules (1)–(5)
hold	identically	for	all	regular	polygons, whereas	Rule (6)	varies	for	different	values	of n. That
is, for	a	square	Rule (6)	is r4 = 1, whereas	for	a	regular	pentagon	the	same	rule	is r5 = 1.

Exercise 5.3.1. [Used	in	This	Section] For	a	regular n-gon, show	that rn−a = r−a for	any
integer a. In	particular, deduce	that rn−1 = r−1.

In	Proposition 5.3.1 we	saw	the	rules	for	combining	expressions	involving	only r or	only m.
We	have	not	yet	seen	the	rules	for	combining	expressions	involving	bothm and r together; we
now	turn	to	this	missing	case. As	before, let	us	start	with	the	case	of	the	equilateral	triangle.
Consider	the	composition rm. Because	this	is	the	composition	of	two	symmetries	of	the	equi-
lateral	triangle, we	know	it	must	be	equal	to	a	single	symmetry	of	the	equilateral	triangle. In
other	words, it	must	be	the	case	that rm equals	one	of 1, r, r2,m,mr ormr2. If	we	calculate
the	net	effect	of rm for	the	equilateral	triangle, using	a	drawing	or	a	cut-out	triangle	(just	as	we
did	in	Section 5.2), we	will	see	that rm ̸= mr, and	that	in	fact rm = mr2 (the	reader	should
verify	this	equality). If	we	try	the	same	result	for	the	square, it	will	turn	out	that rm = mr3.
It	appears, unfortunately, as	if	we	do	not	have	the	same	result	for	the	two	different	polygons.
However, everything	works	out	nicely	if	we	rewrite	our	formulas. For	the	case	of	the	equilateral
triangle, observe	that r2 = r−1 (use	Exercise 5.3.1 (2)	with n = 3), and	therefore rm = mr−1.
In	the	case	of	the	square, we	have r3 = r−1, and	therefore	we	also	have rm = mr−1. We	now
see	a	general	pattern, as	stated	in	the	first	part	of	the	following	proposition; the	second	part	of
the	proposition	generalizes	the	result	even	further.

Proposition 5.3.2. Let 1, r and m be	defined	as	above	for	a	regular n-gon.

1. rm = mr−1;

2. ram = mr−a for	any	integer a.

Demonstration. The	first	part	of	the	proof	is	geometric, whereas	the	second	part	is	algebraic.

(1). We	will	show	that rm = mr−1 by	applying	each	of rm and mr−1 to	a	regular n-gon,
and	we	will	compare	 the	 results. In	Figure 5.3.1 we	see	a	 regular n-gon, with	 some	of	 the
vertices	labeled. In	Figure 5.3.2 we	see	the	result	of	applying	first m and	then r, yielding	the
net	effect	of	doing rm to	the n-gon. In	Figure 5.3.3 we	see	the	result	of	applying	first r−1 and
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thenm, yielding	the	net	effect	of	doingmr−1 to	the n-gon. We	therefore	see	that	the	net	effect
of	doing rm and mr−1 is	the	same, and	therefore	these	two	isometries	are	equal.

(2). If a is	a	positive	integer, then	we	can	apply	Part (1)	of	this	proposition	to	compute

ram = rr · · · r︸ ︷︷ ︸
a times

m = rr · · · r︸ ︷︷ ︸
a−1 times

mr−1 = rr · · · r︸ ︷︷ ︸
a−2 times

mr−1r−1 = · · · = mr−1r−1 · · · r−1︸ ︷︷ ︸
a times

= m(r−1)a = mr−a.

If a is	not	positive, then	the	above	argument	doesn’t	work, so	we	take	the	following	approach.
Let a be	any	integer. Then	we	note	that mra is	the	composition	of m and ra. Whatever a is,
we	know	that ra is	some	rotation, andm is	a	reflection. Hence ra is	orientation	preserving, and
m is	orientation	reversing. By	Proposition 4.4.3 (2)	we	see	that mra is	orientation	reversing.
Because	all	the	symmetries	of	a	regular	polygon	are	rotations	and	reflections, we	deduce	that
mra must	be	a	reflection. Hence, by	Proposition 4.6.3 (1)	we	know	that (mra)(mra) = 1.
Hence mramra = 1. Multiplying	both	sides	on	the	left	by m and	on	the	right	by r−a, we
obtain mmramrar−a = m1r−a. Cancelling	the	adjacentm’s, and	cancelling ra and r−a, we
obtain ram = mr−a. (This	demonstration	actually	makes	unnecessary	the	demonstration	of
Part	(1), and	the	demonstration	of	Part	(2)	when a is	a	positive	integer, but	those	demonstrations
are	intuitively	more	straightforward, and	so	were	worth	keeping.)

DA

B C

Figure	5.3.1

We	now	have	all	the	algebraic	rules	needed	for	working	with 1, r andm. Using	these	algebraic
rules, we	can	now	easily	construct	composition	tables for	the	symmetries	of	regular n-gons.
Instead	of	figuring	out	each	entry	in	these	tables	geometrically	(that	is, by	drawing	each	case, or
using	a	cut-out), as	we	did	in	Section 5.2, we	can	simply	use	our	algebraic	rules, and	essentially
forget	about	the	geometry. (We	are	not	really	forgetting	the	geometry—the	algebraic	rules	for
combining 1, r and m summarize	 the	geometry	of	 the	 regular	polygons. Having	developed
these	rules, we	no	longer	need	to	keep	going	back	to	the	geometry.) As	an	example, let	us	look
at	 the	composition	 table	 for	 the	equilateral	 triangle. We	have	already	seen	 this	composition
table	in	Table 5.2.1, but	let	us	start	from	scratch. We	start	off	with	Table 5.3.1, where	we	see
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Figure	5.3.2
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Figure	5.3.3

the	operation	table	with	no	entries	filled	in	(we	put	in	extra	lines	to	make	it	easier	to	view). We
wish	to	compute	four	sample	entries	in	the	table, which	we	have	labeled A, B, C and D.
We	compute	the	four	desired	entries	in	the	above	table	using	various	parts	of	Proposition 5.3.1

and	Proposition 5.3.2. (Recall	that, as	in	Section 5.2, the	entry	located	in	the	row	containing
Q and	the	column	containing P is Q ◦ P.) Let	us	start	with	entry A. This	entry	is	 the	result
of	the	composition r · r, which	clearly	equals r2. The	entry B is	the	result	of	the	composition
m ·mr, which	equals m2r = 1 · r = r. The	entry C is	the	result	of	the	composition mr · r2,
which	equals mrr2 = mr1+2 = mr3 = m · 1 = m. Finally, the	entry D is	the	result	of	the
composition mr2 ·mr, which	equals mr2mr; using	Proposition 5.3.2 (2), this	last	expression
equals mmr−2r = m2r−2+1 = r−1, and	because	we	are	working	with	an	equilateral	triangle,
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· 1 r r2 m mr mr2

1
r A

r2

m B

mr C

mr2 D

Table	5.3.1

we	see	that	entry D equals r2. We	can	therefore	start	to	fill	in	our	composition	table	as	shown
in	Table 5.3.2.

· 1 r r2 m mr mr2

1
r r2

r2

m r

mr m

mr2 r2

Table	5.3.2

Using	the	same	sorts	of	calculations, we	can	easily	complete	the	entire	table, as	shown	in
Table 5.3.3.

· 1 r r2 m mr mr2

1 1 r r2 m mr mr2

r r r2 1 mr2 m mr

r2 r2 1 r mr mr2 m

m m mr mr2 1 r r2

mr mr mr2 m r2 1 r

mr2 mr2 m mr r r2 1

Table	5.3.3

We	can	now	compare	Table 5.3.3 with	Table 5.2.1. As	expected, the	two	tables	are	entirely
identical, except	for	the	change	of	notation. In	other	words, if	we	take	Table 5.3.3, and	replace
every	instance	of 1 with I, every	instance	of r with R1/3, etc., we	will	obtain	Table 5.2.1 pre-
cisely. Hence, there	is	no	essential	difference	between	the	results	of	computing	compositions	of
symmetries	geometrically	vs.	algebraically, although	each	method	is	more	convenient	or	intu-
itively	appealing	in	different	situations. Finally, we	mention	that	what	we	have	just	done	for	the
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equilateral	triangle	can	also	be	done	for	any	regular n-gon. One	of	the	advantages	of	the	alge-
braic	approach	is	that	the	algebraic	rules	are	the	same	for	all	regular n-gons	(with	the	exception
of	Proposition 5.3.1 (6)).

Exercise 5.3.2. Construct	 the	composition	 table	 for	 the	symmetry	group	of	 the	square,
analogously	to	Table 5.3.3. Use	only	our	algebraic	rules, without	actually	drawing	a	square.
(Calculate	each	entry	in	the	table	directly; do	not	simply	copy	the	pattern	of	Table 5.3.3.)

One	use	of	the	algebraic	approach	to	symmetries	of	regular	polygons	is	that	it	allows	us	to
simplify	complicated	expressions	involving	such	symmetries. For	example, suppose	we	are	given
the	expressionmr5m6r3mr for	some	regular	polygon. We	can	simplify	it	using	the	rules	given
in	Proposition 5.3.1 and	Proposition 5.3.2. Recall	that m and r are	not	regular	numbers, and
therefore	we	can	use	only	the	rules	discussed	in	this	section, and	not	the	regular	rules	for	algebra.
The	idea	is	to	do	the	simplification	one	step	at	a	time. We	proceed	as	follows, underscoring,
and	justifying, each	step	taken:

mr3m7r9mr = mr3mr9mr by	Proposition 5.3.1 (5)

mr3mr9mr = mmr−3r9mr by	Proposition 5.3.2 (2)

mmr−3r9mr = r−3r9mr by	Proposition 5.3.1 (5)

r−3r9mr = r6mr by	Proposition 5.3.1 (3)

r6mr = mr−6r by	Proposition 5.3.2 (2)

mr−6r = mr−6+1 by	Proposition 5.3.1 (3)

mr−6+1 = mr−5

We	can	observe	in	the	above	calculation	some	ideas	that	can	be	used	in	any	similar	situation.
First, whenever	we	have	an m to	a	power, we	can	simplify	the	expression. Second, if	we	have
adjacent	 letters m, or	 if	we	have	adjacent	powers	of r, we	can	 simplify. Third, our	general
strategy	is	to	move	all	the	lettersm to	the	left, and	all	the	letters r to	the	right, so	that	eventually
we	will	have	a	result	that	is	either	of	the	form ra for	some	integer a, or	of	the	form mra for
some	integer a. The	way	we	move	the	letters m to	the	left	and	the	letters r to	the	right	is	by
using	Proposition 5.3.2.
In	the	above	example, we	stopped	when	we	obtainedmr−5. There	is	no	possibility	of	simplify-

ing	further, given	that	we	do	not	know	how	many	edges	the	regular	polygon	has. We	now	turn	to
another	example, this	time	for	a	specific	type	of	regular	polygon. Suppose	are	given	the	expres-
sion mr10m7rm for	the	square. We	can	simplify	this	expression	as	follows, this	time	omitting
the	justification	for	each	step	(which	the	reader	should	supply), though	we	still	underscore	each
step	taken.

mr10m7rm = mr10mrm = mmr−10rm = r−9m = mr9 = mr4r4r = mr.
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Observe	that	it	was	only	in	the	very	last	step	that	we	used	the	fact	that	the	polygon	was	a	square;
up	till	that	point, we	proceeded	exactly	as	we	had	done	for	an	arbitrary	polygon.

Exercise 5.3.3. Simplify	each	of	the	following	expressions	for	arbritrary	regular	polygons.
In	each	case, the	answer	should	be	of	the	form 1 or ra or mra for	some	integer a.

(1) mrmr2.

(2) r5mmrm.

(3) r7m3r2mr.

(4) mr3mr3mr4mr4.

(5) m4rm3rm2rm.

Exercise 5.3.4. Simplify	each	of	the	following	expressions	for	the	regular	polygon	indi-
cated. In	each	case, the	answer	should	be	of	the	form 1 or ra ormra for	some	non-negative
integer a, where a is	less	than	the	number	of	edges	of	the	polygon.

(1) rmr2m for	the	equilateral	triangle.

(2) m3r6mrm for	the	equilateral	triangle.

(3) mr9m2r for	the	square.

(4) mr4mr3mr2mr for	the	regular	pentagon.

(5) mr4mr3mr2mr for	the	regular	hexagon.

In	the	above	examples	of	simplifying	expressions, we	started	with	an	expression	in	algebraic
notation, and	used	our	algebraic	 rules	 in	order	 to	 simplify. We	can	also	use	 this	method	 to
simplify	an	expression	written	in	the	geometric	notation	of	Section 5.2, by	first	converting	to
algebraic	notation, then	simplifying, and	then	converting	back. We	consider	the	example	given
at	the	very	beginning	of	this	section, namely	simplifying R1/20 ◦ M17 ◦ M53 ◦ R3/100 ◦ M29

for	a	regular 100-gon.

R1/20 ◦ M17 ◦ M53 ◦ R3/100 ◦ M1 = r5 ·mr16 ·mr52 · r3 ·m = r5mr16mr52r3m

= r5mr16mr55m = mr−5r16mr55m = mr11mr55m

= mmr−11r55m = r44m = mr−44 = mr−44r100

= mr56 = M57.

It	would	be	very	unpleasant	to	try	to	simplify	the	above	expression	geometrically	as	we	did	in
Section 5.2.
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Exercise 5.3.5. Simplify	each	of	the	following	expressions	for	the	regular	polygon	indi-
cated. In	each	case, the	answer	should	be	in	the	geometric	notation.

(1) R1/3 ◦ M1 ◦ R2/3 ◦ M3 for	the	equilateral	triangle.

(2) M2 ◦ R1/3 ◦ M3 ◦M1 for	the	equilateral	triangle.

(3) R1/2 ◦ M1 ◦ M3 ◦ R3/4 for	the	square.

(4) R3/5 ◦ M1 ◦ M5 ◦ R2/5 ◦ M3 for	the	regular	pentagon.

(5) R1/2 ◦ M1 ◦ M3 ◦ R3/4 for	the	regular 60-gon.

(6) R1/2 ◦ M1 ◦ M50 ◦ M3 ◦ R3/4 for	the	regular 80-gon.

We	finish	this	section	by	mentioning	the	algebraic	approach	to	finding	inverses	of	symmetries
of	regular	polygons, as	summarized	in	the	following	proposition. Part (4)	of	the	proposition	might
look	as	if	it	were	backwards	at	first	glance, but	it	is	correct, and	is	the	result	of	the	fact	that	order
matters	when	combining	symmetries.

Proposition 5.3.3. Let 1, r and m be	defined	as	above	for	a	regular n-gon.

1. (ra)−1 = r−a = (r−1)a for	any	integer a;

2. m−1 = m;

3. (mra)−1 = mra for	any	integer a.

4. (xy)−1 = y−1x−1 for	any	symmetries x and y.

Demonstration.

(1). Recall	that r is	another	notation	for R1/n. Hence r
a is	another	way	of	writing Ra/n. Using

Proposition 4.6.5 (3)	we	see	that
(
Ra/n

)−1
= R−a/n, and	this	last	expression	is	seen	to	be	the

same	as r−a, which	in	turn	is	the	same	as (r−1)a.

(2). Because m is	 a	 reflection, the	 equation	we	need	 to	 show	 is	 simply	 a	 restatement	of
Proposition 4.6.5 (4).

(3). As	discussed	in	the	demonstration	of	Proposition 5.3.2 (2), we	know	thatmra is	a	reflec-
tion. This	equation	we	need	to	show	is	simply	a	restatement	of	Proposition 4.6.5 (4).

(4). We	compute

(xy)(y−1x−1) = x(yy−1)x−1 = x · 1 · x−1 = 1.

It	follows	that (xy)−1 = y−1x−1.

We	note	that	Part (4)	of	 the	above	proposition	can	be	extended	to	any	number	of	symme-
tries, not	just	two. For	example, in	the	case	of	four	symmetries	we	would	have (xyzw)−1 =
w−1z−1y−1x−1.
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5.4 Rosette	Patterns

Regular	polygons, the	symmetries	of	which	we	studied	in	Sections 5.2 and	5.3, may	be	inter-
esting	mathematically, but	they	are	not	patterns	of	great	aesthetic	interest. We	wish	to	turn	our
attention	to	aesthetically	more	interesting—and	mathematically	more	complicated—objects, of-
ten	referred	to	as	ornamental	patterns. We	start	with	rosette	patterns	(or	simply, rosettes) which
are	the	simplest	of	the	three	types	of	ornamental	patterns	that	we	will	treat. A rosette	pattern
is	defined	to	be	any	planar	object	that	has	only	finitely	many	symmetries. See	Figure 5.4.1 for
some	examples	of	rosette	patterns. (We	leave	it	to	the	reader	to	list	all	the	symmetries	for	each
of	the	objects	in	the	figure, thus	verifying	that	they	are	indeed	rosette	patterns.)
The	name	“rosette”	comes	from	rose	windows	in	cathedrals, although	in	fact	the	human	figures

portrayed	in	a	rose	window	often	prevent	the	window	from	having	non-trivial	symmetry.

(i)                                          (ii)                                    (iii)                           (iv)

Figure	5.4.1

Some	authors	use	 the	 term	“finite	figure” instead	of	 rosette	pattern, but	we	 feel	 this	name
is	somewhat	misleading, because	what	is	finite	about	a	rosette	pattern	is	only	the	number	of
symmetries, not	 the	geometric	nature	of	 the	figure. For	example, the	 infinite	cross	shown	in
Figure 5.4.2 (i)	is	a	rosette	pattern	(it	has	eight	symmetries), even	though	it	is	not	geometrically
finite. Moreover, not	all	planar	figures	that	are	finite	in	size	are	rosette	patterns, for	example	the
circle	show	in	Figure 5.4.2 (ii). The	circle	can	be	rotated	about	its	center	by	any	angle, and	so
it	has	infinitely	many	symmetries.

Our	ultimate	goal	for	rosette	patterns	is	to	classify	them	according	to	their	symmetry	groups.
That	is, we	wish	to	list	all	symmetry	groups	that	arise	as	the	symmetry	groups	of	rosette	patterns,
and	to	be	able	to	take	any	given	rosette	pattern, and	identify	which	symmetry	group	on	our
list	corresponds	to	it—analogous	to	a	complete	field	guide	to	the	birds	of	North	America	that
lists	all	types	of	birds	that	can	be	found, and	gives	identifying	characteristics	for	each	type	of
bird. Remarkably, we	can	make	a	complete	field	guide	for	rosette	patterns. (Of	course, just	as
the	field	guide	for	birds	lists	only	each	type	of	bird, not	each	individual	bird, so	too	our	list
of	symmetry	groups	of	rosette	patterns	describes	only	the	symmetries	of	rosette	patterns, not
the	particular	design	elements.) In	contrast	to	our	discussion	of	frieze	patterns	and	wallpaper
patterns	in	Sections 5.5 and	5.6, where	it	would	be	beyond	the	scope	of	this	book	to	give	all	the
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(i)                                                               (ii)   

Figure	5.4.2

mathematical	details	of	the	demonstrations	of	the	main	results, in	the	case	of	rosette	patterns	we
are	able	to	demonstrate	all	the	propositions	in	this	section; these	demonstrations	are	somewhat
lengthy, and	they	are	found	in	Appendices C	and	D.
A symmetry	group	is	a	collection	of	symmetries. To	understand	what	collections	of	symmetries

arise	as	symmetry	groups	of	rosette	patterns, we	will	look	at	each	of	the	four	types	of	isometries
as	applied	to	rosette	patterns. We	start	with	translations	and	glide	reflections. Intuitively, if	a
rosette	pattern	had	a	 translation	symmetry, then	doing	the	translation	twice	would	also	be	a
symmetry, and	three	times, four	times, etc. would	all	be	symmetries. It	would	follow	that	the
object	had	infinitely	many	symmetries, which	cannot	be	the	case	for	a	rosette	pattern. Hence,
a	rosette	pattern	cannot	have	translation	symmetry. Similarly	for	glide	reflection	symmetry. We
therefore	have	the	following	proposition.

Proposition 5.4.1. A rosette	pattern	has	no	translation	symmetry	and	no	glide	reflection	sym-
metry.

A rosette	pattern	can	have	reflection	and/or	rotation	symmetry. The	pattern	in	Figure 5.4.1 (i)
has	rotation	symmetry	but	no	reflection	symmetry; the	pattern	in	Part (ii)	of	the	figure	has	rotation
and	reflection	symmetry; the	pattern	in	Part (iv)	of	the	figure	has	no	symmetry	other	than	the
identity	symmetry. We	start	our	discussion	by	examining	rotation	symmetry	of	rosette	patterns.

BEFORE YOU READ FURTHER:

What	can	be	said	about	centers	of	rotation	of	rosette	patterns. Specificially, try	to	decide
whether	a	rosette	pattern	can	have	more	than	one	center	of	rotation. If	yes, try	to	draw
such	a	rosette	pattern; if	no, say	why	not.
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Our	first	result	about	rotation	symmetry	of	rosette	patterns	is	the	following	proposition, which
answers	the	above	question.

Proposition 5.4.2. If	a	rosette	pattern	has	rotation	symmetries, all	such	symmetries	have	the
same	center	of	rotation.

We	now	know	that	any	rosette	pattern	has	at	most	one	center	of	rotation. If	there	is	a	center	of
rotation	in	a	rosette	pattern, can	we	say	something	about	the	possible	angles	of	rotation	for	the
rotation	symmetries	about	this	center	of	rotation. It	turns	out	that	we	can	say	a	good	deal	about
such	angles. Because	we	will	need	a	similar	analysis	 in	our	 treatment	of	wallpaper	patterns
in	Section 5.6, we	state	our	next	proposition	in	a	general	form	that	is	not	restricted	to	rosette
patterns.
Suppose	we	have	a	planar	object	(not	necessarily	a	rosette	pattern)	with	a	center	of	rotation.

Hence, there	 is	 at	 least	 one	 rotation	 symmetry	of	 the	object	with	 this	point	 as	 its	 center	of
rotation. There	might	be	more	than	one	such	rotation	symmetry; that	is, there	might	be	rotation
symmetries	about	this	center	of	rotation	by	various	angles. Among	all	these	rotation	symmetries
about	this	center	of	rotation, there	might	or	might	not	be	a	smallest	clockwise	rotation	symmetry
(recall	that	the	term	“rotation	symmetry”	always	means	a	non-trivial	rotation). In	Figure 5.4.2 (i)
there	 is	 a	 smallest	 clockwise	 rotation	 symmetry, namely	by 90◦; in	 Figure 5.4.2 (ii)	 there	 is
no	smallest	clockwise	rotation	symmetry	(rotation	symmetries	can	be	used	with	arbitrarily	small
angles). We	note	that	if	there	is	a	smallest	clockwise	rotation	symmetry, then	rotation	by	negative
of	the	angle	is	the	smallest	counterclockwise	rotation	symmetry, and	vice-versa, so	we	need	only
consider	clockwise	rotations.
The	situations	where	a	center	of	rotation	does	not	have	a	smallest	rotation	symmetry	are	com-

plicated	mathematically, and	are	not	useful	for	us. By	contrast, the	situation	where	centers	of
rotation	have	smallest	rotation	symmetries	is	of	great	interest. The	crucial	fact	is	the	following
proposition, the	demonstration	of	which	is	found	in	Appendix C.

Proposition 5.4.3. Let P be	a	planar	object. Suppose	that A is	a	center	of	rotation	of P, and
suppose	that	there	is	a	smallest	clockwise	rotation	symmetry	about A. Then	there	is	a	positive
integer n such	that	the	following	properties	hold.

1. The	smallest	clockwise	rotation	symmetry	of P about A is RA
1/n.

2. Any	rotation	symmetry	of P about A is	of	the	form
[
RA
1/n

]k
= RA

k/n for	some	integer k.

3. The	collection	of	all	the	rotation	symmetries	of P is {I, RA
1/n, R

A
2/n, R

A
3/n, . . . R

A
(n−1)/n}.

We	can	now	define	some	very	useful	terminology. Suppose	that P be	a	planar	object, and
suppose	that A is	a	center	of	rotation	of P. If	there	is	a	smallest	clockwise	rotation	symmetry
aboutA, then	by	the	above	proposition	we	know	that	the	smallest	clockwise	rotation	symmetry
about A is	by	an	angle	of	the	form 360◦/n for	some	whole	number n. That	is, the	smallest
clockwise	rotation	symmetry	is RA

1/n. We	then	say	that	the	center	of	rotation A is	of order n.
(It	is	more	convenient	to	refer	to	the	number n than	to	the	fraction 1/n.) Additionally, if A is
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a	center	of	rotation	of	order n, and	if	there	is	another	rotation	symmetry RA
β about A for	some

angle β, then	Proposition 5.4.3 (2)	 implies	 that β is	an	 integer	multiple	of 360◦/n. That	 is,
we	have β = (k · 360◦)/n for	some	whole	number k, which	means	that RA

β is	the	result	of
composing RA

1/n with	itself k times.
We	now	return	to	our	discussion	of	rosette	patterns. Suppose	that	a	rosette	pattern	has	rotation

symmetries. By	Proposition 5.4.2, all	such	symmetries	have	the	same	center	of	rotation, say A.
Because	the	rosette	pattern	has	only	finitely	many	symmetries, then	there	must	be	a	smallest
clockwise	rotation	symmetry	about A. Therefore, as	just	discussed	in	the	previous	paragraph,
the	center	of	rotation A has	order n for	some	whole	number n. We	then	say	that	the	rosette
pattern	is	of order n. If	a	rosette	pattern	has	no	rotation	symmetry	we	say	that	it	is	of order 1.
For	example, the	rosette	patterns	in	Figure 5.4.1 are	of	orders 4, 3, 5 and 1 respectively. Every
rosette	pattern	has	an	order	(which	is	one	of	the	numbers 1, 2, 3, 4, . . .).
We	now	turn	to	reflection	symmetry	of	rosette	patterns.

BEFORE YOU READ FURTHER:

Think	about	what	can	be	said	about	the	relation	between	lines	of	reflection	and	centers
of	rotation	of	rosette	patterns.

The	following	proposition	completely	characterizes	the	relation	between	lines	of	reflection
and	centers	of	 rotation	of	 rosette	patterns. The	demonstration	of	 this	proposition	 is	 found	 in
Appendix D.

Proposition 5.4.4.

1. If	a	rosette	pattern	has	both	reflection	symmetry	and	rotation	symmetry, then	all	lines	of
reflection	go	through	the	single	center	of	rotation.

2. If	a	rosette	pattern	has	more	than	one	reflection	symmetry, then	all	lines	of	reflection	of
the	rosette	pattern	go	through	a	single	point, and	any	rotation	symmetry	of	the	rosette
pattern	has	this	point	as	its	center	of	rotation.

Putting	 together	what	we	have	seen	so	 far, we	know	that	 the	symmetry	group	of	a	 rosette
pattern	has	no	translation	symmetry	or	glide	reflection	symmetry; if	it	has	rotation	symmetries,
they	all	have	the	same	center	of	rotation; if	it	has	reflection	symmetry	and	rotation	symmetry,
then	 all	 lines	 of	 reflection	 go	 through	 the	 single	 center	 of	 rotation; if	 it	 has	more	 than	one
reflection	symmetry, all	lines	of	reflection	go	through	a	single	point, and	this	point	is	also	the
center	of	rotation	for	all	rotation	symmetries. We	know	further	that	every	rosette	pattern	has	an
order, which	is	one	of 1, 2, 3, 4, . . .. Once	we	know	the	order	of	a	rosette	pattern, we	know
all	there	is	to	know	about	its	rotations. For	example, a	rosette	pattern	of	order 5 has	rotations I,
R1/5, R2/5, R3/5 and R4/5. The	only	question	that	remains	is, therefore, what	types	of	reflection
symmetries	a	rosette	pattern	can	have, once	we	know	its	order.



174 5. Symmetry	of	Planar	Objects	and	Ornamental	Patterns

BEFORE YOU READ FURTHER:

Suppose	a	rosette	pattern	has	order n. Think	about	 the	possible	numbers	of	reflection
symmetries	the	rosette	pattern	can	have.

Let	us	look	at	some	examples. The	rosette	pattern	in	Figure 5.4.3 (i)	has	symmetries I, R1/5,
R2/5, R3/5 and R4/5; it	has	no	reflections. The	rosette	pattern	in	Figure 5.4.3 (ii)	has	symmetries
I, R1/4, R1/2, R3/4,M1,M2,M3 andM4; the	four	lines	of	reflection	corresponding	to	the	four
reflectionsM1,M2,M3 andM4 are	similar	to	the	four	lines	of	reflection	shown	in	Figure 5.2.6.
Notice	 that	 in	 the	first	 case	 there	are	no	 reflections, and	 in	 the	 second	case	 the	number	of
reflections	is	the	same	as	the	order	of	the	rosette	pattern. It	turns	out	(as	will	be	made	precise	in
Proposition 5.4.5 below), that	every	rosette	pattern	falls	into	one	of	these	two	patterns.

(i)                                                   (ii)     

Figure	5.4.3

To	make	our	result	precise, for	each	positive	integer n, we	define	the	symmetry	group Cn to
be	the	collection	of	symmetries

Cn =
{
I, R1/n, R2/n, R3/n, . . . R(n−1)/n

}
.

For	each	positive	integern, we	define	the	symmetry	groupDn to	be	the	collection	of	symmetries

Dn =
{
I, R1/n, R2/n, R3/n, . . . R(n−1)/n,M1,M2,M3, . . . ,Mn

}
.

(The	letters C andD stand	for	“cyclic”	and	“dihedral”	respectively, though	we	will	not	be	using
these	terms. Also, we	note	that	there	is	no	completely	standard	notation	for	these	groups, and
some	authors	use	notation	that	is	different	from	ours—though	the	names	cyclic	and	dihedral	are
quite	standard.) For	example, we	have

C4 =
{
I, R1/4, R1/2, R3/4

}
,

and
D3 =

{
I, R1/3, R2/3,M1,M2,M3

}
.

Using	the	algebraic	notation	of	Section 5.3, we	can	also	write Cn as

Cn =
{
1, r, r2, r3, . . . rn−1

}
,
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and Dn as
Dn =

{
1, r, r2, r3, . . . rn−1,m,mr,mr2,mr3, . . .mrn−1

}
.

We	note	that	all	the	groups Cn are	different	from	one	another, all	the	groupsDn are	different
from	one	another, and	all	the	groups Cn are	different	from	all	the	groups Dn.
Using	our	new	notation, we	see	that	the	rosette	patterns	in	Figure 5.4.3 have	symmetry	groups

of	type C5 and D4 respectively. It	can	be	seen, using	the	ideas	of	Sections 5.2 and	5.3, that	a
regular n-gon	has	symmetry	group	of	typeDn, and	thatDn has	same	type	of	composition	table
we	saw	for	a	regular n-gon. The	composition	table	for Cn is	simply	the	upper	left	hand	quarter
of	the	multiplication	table	for	a	regular n-gon. For	example, the	composition	table	forC8, using
the	notation	of	Sections 5.3, is	given	in	Table 5.4.1.

· 1 r r2 r3 r4 r5 r6 r7

1 1 r r2 r3 r4 r5 r6 r7

r r r2 r3 r4 r5 r6 r7 1
r2 r2 r3 r4 r5 r6 r7 1 r

r3 r3 r4 r5 r6 r7 1 r r2

r4 r4 r5 r6 r7 1 r r2 r3

r5 r5 r6 r7 1 r r2 r3 r4

r6 r6 r7 1 r r2 r3 r4 r5

r7 r7 1 r r2 r3 r4 r5 r6

Table	5.4.1

We	can	now	state	 the	complete	classification	of	 symmetry	groups	of	 rosette	patterns. The
demonstration	of	this	proposition	is	given	in	Appendix D.

Proposition 5.4.5 (Leonardo’s	Theorem). The	symmetry	group	of	a	rosette	pattern	is	either Cn

for	some	positive	integer n, or Dn for	some	positive	integer n.

It	follows	that	the	complete	list	of	all	possible	collections	of	symmetries	of	rosettes	patterns
are

C1, C2, C3, C4, . . . , Cn, . . .

D1, D2, D3, D4, . . . , Dn, . . . .

There	are	infinitely	many	such	groups, a Cn and	aDn for	each	integer n ≥ 1. These	symmetry
groups	are	known	as	the rosette	groups.
The	above	proposition	is	commonly	referred	to	as	Leonardo’s	Theorem	in	honor	of	Leonardo

da	Vinci, who	appears	to	have	known	this	fact, though	he	did	not	have	the	mathematical	tools	to
express	this	knowledge	rigorously, nor	to	prove	that	these	are	indeed	the	only	possible	collec-
tions	of	symmetries	of	rosette	patterns. Leonardo’s	interest	in	rosette	patterns	may	have	originated
in	his	interest	in	the	possible	symmetries	of	churches	with	circular	floor	plans. See	Figure 5.4.4
for	some	pictures	from	Leonardo’s	notebooks.
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Figure	5.4.4

Leonardo’s	Theorem	is	really	quite	remarkable, in	that	it	rules	out	all	sorts	of	combinations	of
symmetries	as	arising	from	rosette	patterns. For	example, there	is	no	rosette	pattern	the	symmetry
group	of	which	has 5 rotations	(including	the	identity)	and 3 reflections; there	is	also	no	rosette
pattern	that	has	rotation	by 1/3 of	a	whole	turn	and	by 1/4 of	a	whole	turn, but	by	no	smaller
rotation.
Suppose	you	are	given	a	rosette	pattern, for	example	the	one	shown	in	Figure 5.4.5. How	do

you	determine	its	symmetry	group? First, figure	out	its	order	(order 4 in	the	case	of	Figure 5.4.5).
Then	determine	if	it	has	reflection	symmetry	or	not	(there	is	reflection	symmetry	in	the	case	of
Figure 5.4.5). If	there	is	reflection	symmetry, you	necessarily	have	the	group Dn, where n is
the	order; if	there	is	no	reflection	symmetry, you	necessarily	have	group Cn. Hence	the	rosette
pattern	shown	in	Figure 5.4.5 has	group D4.

Figure	5.4.5

Exercise 5.4.1. For	each	of	the	rosette	patterns	shown	in	Figure 5.4.6, list	the	symmetries,
and	state	what	type	of	symmetry	group	it	has.
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(i)                                            (ii)                                         (iii)

(iv)                                          (v)                                         (vi)

(vii)                                       (viii)                                        (ix)

Figure	5.4.6

Exercise 5.4.2. For	each	of	the	following	collections	of	symmetries, state	whether	or	not	it
is	the	symmetry	group	of	some	planar	object. If	yes, give	an	example	of	an	object	with	that
symmetry	group; if	no, explain	why	not.

(1) {I, R1/3, R2/3,M1,M2}.

(2) {I, R1/3, R2/3}.

(3) {I, R1/2, R3/4}.

(4) {I,M1,M2}.

(5) {I,M1}.

(6) {I, R1/2,M1,M2}.
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5.5 Frieze	Patterns

We	now	turn	to	frieze	patterns	(or	simply, friezes), another	type	of	ornamental	pattern, which	are
slightly	more	complicated	than	rosette	patterns, but	which	are	correspondingly	more	interesting
as	well. As	was	the	case	for	rosette	patterns, in	the	case	of	frieze	patterns	we	will	also	be	able
to	state	a	complete	classification	of	the	symmetry	groups, analogous	to	Leonardo’s	Theorem	for
rosette	patterns, though	in	the	present	case	it	would	be	beyond	the	scope	of	this	book	to	include
all	the	details	of	the	demonstration	of	the	classification	for	frieze	patterns.
A frieze	pattern (also	known	as	a strip	pattern) is	any	planar	object	that	has	translation	symme-

try, but	such	that	its	translation	symmetry	satisfies	two	conditions: (1)	all	translation	symmetries
are	in	parallel	directions; and	(2)	there	is	a	smallest	translation	symmetry	(recall	that	the	term
“translation	symmetry”	always	means	a	non-trivial	translation). In	Figure 5.5.1, Parts (i)	and	(ii)
are	frieze	patterns	(note	that	in	Part (ii)	the	basic	unit	of	translation	is	two	people). Part (iii)	is
not	a	frieze	pattern	because	it	has	translation	symmetry	in	non-parallel	directions	(for	example,
horizontal	and	vertical), and	Part (iv)	is	not	a	frieze	pattern	because	it	has	no	smallest	translation
symmetry.

Figure	5.5.1

It	is	important	to	recognize	that	any	frieze	pattern	will	“go	on	forever.” For	example, the	pattern
. . . TTTTT . . ., which	we	assume	is	going	on	forever	in	both	directions, is	a	frieze	pattern. The
pattern TTTTT, which	consists	of	precisely	five	 letters T, is	not	 a	 frieze	pattern	 (though	 it	 is
a	rosette	pattern, with	symmetry	group D1). If	a	planar	object	does	not	go	on	forever, then	it
cannot	possibly	have	translation	symmetry, and	therefore	it	cannot	be	a	frieze	pattern. However,
not	everything	that	goes	on	forever	is	a	frieze	pattern. For	example, a	non-repeating	infinite	strip
of	letters, or	a	straight	line, both	go	on	forever, but	neither	is	a	frieze	pattern. Of	course, we
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cannot	physically	draw	something	that	goes	on	forever. We	will	understand, however, that	even
though	our	pictures	of	frieze	patterns	do	not	go	on	forever, we	should	think	of	frieze	patterns
as	extending	beyond	just	what	is	drawn, and	going	on	forever. An	object	that	goes	on	forever	is
necessarily	a	mental	construct—but	so	are	many	other	things	in	both	mathematics	and	outside
of	it. Being	a	mental	construct	is	no	liability, at	least	from	a	mathematical	viewpoint. Indeed, it
would	be	a	pity	to	limit	our	imagination	to	only	those	things	we	can	physically	construct.
For	ease	of	discussion, we	will	assume	that	all	frieze	patterns	have	been	positioned	so	that	the

direction	in	which	they	can	be	translated	is	horizontal. (This	is	the	case	in	Figure 5.5.1.) Any
frieze	pattern, no	matter	how	it	is	originally	drawn, can	be	rotated	to	make	it	“horizontal,” so
we	are	not	losing	anything	by	our	assumption.
Our	ultimate	goal	for	frieze	patterns	is	similar	to	our	goal	for	rosette	patterns, namely	to	clas-

sify	frieze	patterns	according	to	their	symmetry	groups. What	we	mean	by	this, at	the	risk	of
repetition, is	 to	list	all	symmetry	groups	that	arise	as	the	symmetry	groups	of	 frieze	patterns,
and	to	be	able	to	take	any	given	frieze	pattern, and	identify	which	symmetry	group	on	our	list
corresponds	to	it. As	for	rosette	patterns, we	will	begin	by	looking	at	each	of	the	four	types	of
isometries	as	applied	to	frieze	patterns.
We	start	by	looking	at	 translation	symmetry	of	 frieze	patterns. Actually, there	is	nothing	to

say	here. By	definition, every	frieze	pattern	must	have	translation	symmetry, subject	to	certain
restrictions. Hence, we	cannot	distinguish	between	various	symmetry	groups	 that	arise	 from
frieze	patterns	by	asking	whether	or	not	they	have	translation	symmetry—they	all	do.
We	next	turn	to	rotation	symmetry	of	frieze	patterns. The	frieze	pattern	in	Figure 5.5.2 (i)	has	no

rotation	symmetry. The	frieze	pattern	in	Figure 5.5.2 (ii)	has	rotation	symmetry	by 180◦ about
the	point	labeled A, and	also	about	all	points	points	that	are	halfway	between	two	adjacent
letters Z in	the	pattern, and	all	points	that	are	at	the	center	of	a	letter Z. (As	in	Section 4.2, we
will	refer	to	a 180◦ as	a	halfturn	rotation, or	simply	halfturn.) It	is	not	hard	to	see	that	a	frieze
pattern	cannot	have	rotation	symmetry	by	any	angle	other	than 180◦ (or	an	integer	multiple	of
180◦), because	the	frieze	pattern	would	not	land	on	itself	if	it	were	rotated	by	any	other	angle.
Consider	the	frieze	pattern	shown	in	frieze	pattern	in	Figure 5.5.3. Although	it	is	true	that	each
square	in	the	frieze	pattern	can	be	rotated	by 90◦ about	its	center, and	it	will	land	on	itself, such
a	rotation	is	not	a	symmetry	of	the	frieze	pattern, because	we	always	rotate	the	whole	plane,
not	just	one	little	piece	of	the	plane, and	if	we	rotate	the	whole	plane	by 90◦ then	the	frieze
pattern	will	not	land	on	itself. When	it	comes	to	rotation	symmetry	for	a	frieze	pattern, it	is	either
halfturn	symmetry	or	nothing.
We	note	that	if	a	frieze	pattern	has	halfturn	symmetry	about	one	center	of	rotation, then	it	has

infinitely	many	centers	of	halfturn	rotation, obtained	by	applying	the	translation	symmetry	to
the	original	center	of	rotation. Further, all	centers	of	halfturn	rotation	must	be	vertically	in	the
middle	of	the	frieze	pattern	(assuming	the	frieze	pattern	is	horizontal).

Next, we	turn	to	reflection	symmetry. The	frieze	pattern	in	Figure 5.5.4 (i)	has	no	reflection
symmetry; the	frieze	pattern	in	Figure 5.5.4 (ii)	has	reflection	symmetry	in	the	vertical	line	in-
dicated	(and	in	other	vertical	lines	as	well); the	frieze	pattern	in	Figure 5.5.4 (iii)	has	reflection
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(i)                                                                  (ii)

A

Z  Z  Z  Z  Z  Z  

Figure	5.5.2

Figure	5.5.3

symmetry	in	the	horizontal	line	indicated; the	frieze	pattern	in	Figure 5.5.4 (iv)	has	reflection
symmetry	in	both	vertical	and	horizontal	lines. It	is	not	hard	to	see	that	a	frieze	pattern	cannot
have	reflection	symmetry	in	a	line	that	is	neither	vertical	nor	horizontal, because	the	frieze	pat-
tern	would	not	land	on	itself	if	it	were	reflected	in	a	line	that	is	neither	vertical	nor	horizontal.
We	note	that	 if	a	frieze	pattern	has	reflection	symmetry	in	a	vertical	 line, then	it	necessarily
has	reflection	symmetry	in	infinitely	many	vertical	lines, obtained	by	applying	the	translation
symmetry	to	the	original	vertical	line	of	reflection. On	the	other	hand, if	a	frieze	pattern	has
reflection	symmetry	 in	a	horizontal	 line, then	there	 is	only	one	horizontal	 line	of	 reflection,
namely	the	horizontal	line	that	is	vertically	in	the	middle	of	the	frieze	pattern	(assuming	the
frieze	pattern	is	horizontal).

(i)                                                                 (ii)

H  H  H  H  H  HD  D  D  D  D  D
(iii)                                                                       (iv)

F  F  F  F  F  F A  A  A  A  A  A

Figure	5.5.4

Finally, we	consider	glide	reflection	symmetry. The	frieze	pattern	in	Figure 5.5.5 (i)	has	no	glide
reflection	symmetry; the	frieze	pattern	in	Figure 5.5.5 (ii)	has	glide	reflection	symmetry, where
the	line	of	glide	reflection	is	horizontal, and	the	translation	involved	takes	a ∪ and	moves	it	onto
an	adjacent ∩. If	a	frieze	pattern	has	glide	reflection	symmetry, then	the	line	of	glide	reflection
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must	be	the	horizontal	line	that	is	vertically	in	the	middle	of	the	frieze	pattern	(assuming	the
frieze	pattern	is	horizontal).

F  F  F  F  F  F ∩  ∪  ∩  ∪  ∩  ∪  
(i)                                                                            (ii)   

H  H  H  H  H  H
(iii) 

Figure	5.5.5

The	frieze	pattern	in	Figure 5.5.5 (iii)	has	glide	reflection	symmetry, but	it	is	fundamentally
different	from	the	glide	reflection	symmetry	of	the	frieze	pattern	in	Figure 5.5.5 (ii). Any	glide
reflection	is	the	result	of	combining	a	translation	and	a	reflection. For	the	frieze	pattern	in	Fig-
ure 5.5.5 (iii), we	see	that	each	of	the	translation	and	the	reflection, that	together	constitute	the
glide	reflection	symmetry, is	itself	a	symmetry	of	the	frieze	pattern. By	contrast, the	frieze	pattern
in	Figure 5.5.5 (ii)	has	no	reflection	symmetry	in	a	horizontal	line, and	neither	the	translation
nor	the	reflection, that	together	constitute	the	glide	reflection	symmetry, is	alone	a	symmetry	of
the	frieze	pattern. We	call	a	glide	reflection	symmetry non-trivial if	neither	the	translation	nor
the	reflection	that	together	constitute	the	glide	reflection	symmetry, is	alone	a	symmetry	of	the
frieze	pattern. We	note	that	if	a	frieze	pattern	has	glide	reflection	symmetry, and	has	reflection
symmetry	in	a	horizontal	line, then	the	glide	reflection	symmetry	must	be	trivial; the	reader	is
asked	to	supply	the	details	in	Exercise 5.5.1. In	other	words, if	a	frieze	pattern	has	non-trivial
glide	reflection	symmetry, then	it	cannot	have	reflection	symmetry	in	a	horizontal	 line; con-
versely, if	a	frieze	pattern	has	reflection	symmetry	in	a	horizontal	line, then	it	has	only	trivial
glide	reflection	symmetry. So, the	only	time	to	look	for	non-trivial	glide	reflection	symmetry	is
when	there	is	no	reflection	symmetry	in	a	horizontal	line.

Exercise 5.5.1. [Used	in	This	Section] Suppose	that	a	frieze	pattern	has	glide	reflection
symmetry, and	has	reflection	symmetry	in	a	horizontal	line. Show	that	the	glide	reflection
symmetry	must	be	trivial.

In	the	case	of	rosette	patterns, we	could	list	the	symmetries	each	pattern	had, because	each	list
of	symmetries	was	finite	(by	definition	of	what	it	means	to	be	a	rosette	pattern). We	cannot	make
such	lists	easily	for	frieze	patterns, because	frieze	patterns	have	infinitely	many	symmetries	each.
However, even	though	we	cannot	conveniently	list	symmetries	in	the	case	of	frieze	patterns, we
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can	still	ask	which	types	of	symmetries	can	be	combined	with	each	other. To	do	so, we	ask	the
following	four	questions	about	any	given	frieze	pattern.

Question	A: Is	there	halfturn	symmetry?

Question	B: Is	there	reflection	symmetry	in	a	vertical	line?

Question	C: Is	there	reflection	symmetry	in	a	horizontal	line?

Question	D: Is	there	non-trivial	glide	reflection	symmetry?

Given	that	each	of	the	above	questions	has	either	yes	or	no	as	the	answer, there	are 2·2·2·2 =
16 possible	combinations	of	answers	to	these	questions. These 16 cases	are	listed	in	Table 5.5.1.

Questions
A B C D

1 N N N N
2 N N N Y
3 N N Y N
4 N N Y Y
5 N Y N N
6 N Y N Y
7 N Y Y N
8 N Y Y Y
9 Y N N N
10 Y N N Y
11 Y N Y N
12 Y N Y Y
13 Y Y N N
14 Y Y N Y
15 Y Y Y N
16 Y Y Y Y

Table	5.5.1

What	is	interesting	is	that	not	every	combination	listed	in	Table 5.5.1 can	actually	occur. In
other	words, not	every	possible	type	of	symmetry	of	a	frieze	pattern	can	exist	in	combination
with	every	other	type	of	symmetry. Using	some	of	the	facts	about	isometries	that	we	have	already
discussed, we	will	in	fact	eliminate	the	majority	of	the	listed	combinations	of	answers	to	the
four	questions. In	each	case	that	is	eliminated, we	will	see	that	the	answers	to	the	four	questions
contradict	each	other.
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BEFORE YOU READ FURTHER:

Try	to	eliminate	as	many	of	the	cases	in	Table 5.5.1 as	you	can; for	each	case	that	you
eliminate, state	why	no	frieze	pattern	can	satisfy	that	combination	of	symmetries. For	each
case	that	you	do	not	eliminate, try	to	find	a	frieze	pattern	that	has	that	combination	of
symmetries.

The	cases	that	can	be	eliminated	from	Table 5.5.1 are	the	following:

(4)	NNYY. There	is	reflection	symmetry	in	a	horizontal	line, which	implies	that	the	only	glide
reflection	symmetry	is	trivial	(as	mentioned	in	our	discussion	of	glide	reflection	symmetries	of
frieze	patterns). Because	this	case	does	have	a	non-trivial	glide	reflection	symmetry, we	have	a
contradiction.

(6)	NYNY. There	 is	 reflection	symmetry	 in	a	vertical	 line	and	a	glide	reflection	symmetry. If
the	first	of	 these	 isometries	 is	 followed	by	 the	 second, then	by	Exercise 4.6.7 we	know	 the
resulting	isometry	is	a	halfturn	symmetry. Because	this	case	has	no	halfturn	symmetry, we	have
a	contradiction.

(7)	NYYN. There	is	reflection	symmetry	vertical	line	and	reflection	symmetry	in	a	horizontal
line. If	the	first	of	these	reflections	is	followed	by	the	second, then	by	Proposition 4.6.3 (3)	we
know	the	resulting	isometry	is	a	halfturn	symmetry. Because	this	case	has	no	halfturn	symmetry,
we	have	a	contradiction.

(8)	NYYY. This	case	is	just	like	Case (7).

(10)	YNNY. There	is	a	halfturn	symmetry	and	a	glide	reflection	symmetry. The	center	of	rotation
of	the	halfturn	symmetry	must	be	on	the	line	of	glide	reflection. If	the	halfturn	is	followed	by
the	glide	reflection, then	by	Exercise 4.6.6 we	deduce	that	the	resulting	isometry	is	a	reflection
symmetry	in	a	vertical	line. Because	this	case	has	no	reflection	symmetry	in	a	vertical	line, we
have	a	contradiction.

(11)	YNYN. There	 is	a	halfturn	 symmetry	and	 reflection	 symmetry	 in	a	horizontal	 line. The
center	of	rotation	of	the	halfturn	symmetry	must	be	on	the	horizontal	line	of	reflection. If	the
halfturn	is	followed	by	the	reflection	in	the	horizontal	line, then	by	Exercise 4.6.4 we	deduce
that	the	resulting	isometry	is	reflection	symmetry	in	a	vertical	line. Because	this	case	has	no
reflection	symmetry	in	a	vertical	line, we	have	a	contradiction.

(12)	YNYY. This	case	is	just	like	Case (4).

(13)	YYNN. There	is	a	halfturn	symmetry	and	reflection	symmetry	in	a	vertical	line. If	the	halfturn
is	followed	by	the	reflection	in	a	vertical	line, then	by	Exercises 4.6.4 and	4.6.5 we	deduce	that
the	resulting	isometry	is	either	a	reflection	symmetry	in	a	horizontal	line	or	a	glide	reflection
symmetry. Because	this	case	has	neither	of	these	symmetries, we	have	a	contradiction.

(16)	YYYY. This	case	is	just	like	Case (4).
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There	are	seven	combinations	of	answers	that	we	have	not	eliminated, namely	Cases (1), (2),
(3), (5), (9), (14)	and	(15). In	fact, each	of	these	combinations	does	arise	from	a	frieze	pattern,
as	will	be	seen	very	shortly. Moreover, all	 frieze	patterns	 that	have	 the	same	answers	 to	 the
four	questions	have	the	same	symmetry	groups, and	each	of	these	seven	combinations	of	an-
swers	corresponds	to	a	different	symmetry	group. (The	proof	of	these	facts	uses	some	advanced
mathematics	that	is	beyond	the	scope	of	this	book.) In	sum, there	are	precisely	seven	symmetry
groups	of	frieze	patterns. These	seven	symmetry	groups, known	as	the frieze	groups, are	often
denoted	with	the	symbols f11, f12, f1m, f1g, fm1, fmm and fmg. (The	rationale	for	these
symbols	is	as	follows: the f stands	for	frieze; the	first	symbol	after	the f is 1 if	there	is	no	re-
flection	symmetry	in	a	vertical	line, and	is m if	there	is; the	second	symbol	after	the f is 1 if
there	is	no	other	symmetry, ism if	there	is	reflection	symmetry	in	a	horizontal	line, is g if	there
is	non-trivial	glide	reflection	symmetry, and	is 2 if	there	is	halfturn	symmetry.) We	summarize
the	classification	of	the	symmetry	groups	of	frieze	patterns, and	give	an	example	of	each	of	the
seven	types, in	the	following	proposition.

Proposition 5.5.1 (Classification	of	Frieze	Patterns). The	symmetry	group	of	any	frieze	pattern
is	one	of	the	seven	groups	listed	in	Table 5.5.2.

Questions
Name A B C D Example

f11 N N N N F F F F F F F F

f1g N N N Y D ∪ D ∩ D ∪ D ∩
f1m N N Y N D D D D D D D D

fm1 N Y N N T T T T T T T T

f12 Y N N N S S S S S S S S

fmg Y Y N Y ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩
fmm Y Y Y N O O O O O O O O

Table	5.5.2

In	Section 5.4 we	not	only	stated	the	types	of	symmetry	groups	that	could	arise	for	rosette
patterns, namely	the Cn and Dn groups, but	we	explicitly	listed	all	the	members	of	each	of
these	groups; for	example, we	stated	that

Cn =
{
1, r, r2, r3, . . . rn−1

}
.

Can	we	give	a	similar	explicit	description	of	each	of	the	seven	frieze	groups? In	theory	we	could
do	so, though	it	is	more	complicated	than	in	the	case	of	the	rosette	groups, because	each	rosette
group	is	finite, whereas	each	frieze	group	is	infinite. Consider, for	example, the	frieze	group f11,
which	is	the	symmetry	group	of	frieze	patterns	that	have	no	symmetry	other	than	translation, for
example · · · FFFFF · · · . Let t denote	the	smallest	possible	translation	symmetry	to	the	right	of
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this	frieze	pattern. Then	the	collection f11 of	all	symmetries	of	this	frieze	pattern	is

f11 =
{
· · · t−3, t−2, t−1, 1, t, t2, t3, · · ·

}
.

We	can	think	of t as t1, and 1 as t0. Although	we	will	not	write	a	composition	table	for f11,
because	such	a	table	would	be	infinite, we	can	explicitly	describe	how	to	combine	any	two
symmetries	in f11 by	the	rule tatb = ta+b.

Exercise 5.5.2. List	the	symmetries	in	the	frieze	group f1m, similarly	to	the	way	we	listed
the	symmetries	in f11. Once	again	let t denote	the	smallest	possible	translation	symmetry
to	the	right	of	this	frieze	pattern, and	let h denote	reflection	in	a	horizontal	line.

Let	us	now	use	Table 5.5.2 to	analyze	the	symmetries	of	the	frieze	pattern	in	Figure 5.5.6.
We	first	ask	if	the	frieze	pattern	has	halfturn	symmetry. In	this	case	the	answer	is	yes; the	reader
should	find	a	center	of	rotation	for	a	halfturn	symmetry. The	next	question	is	whether	there	is
reflection	symmetry	in	vertical	lines. The	answer	is	yes; the	reader	should	find	a	vertical	line	of
reflection. Next, we	ask	whether	there	is	reflection	symmetry	in	a	horizontal	line. The	answer
is	no. Finally, we	ask	if	the	frieze	pattern	has	non-trivial	glide	reflection	symmetry. The	answer
is	yes; the	reader	should	find	the	non-trivial	glide	reflection. We	therefore	have	answers	YYNY
to	Questions	A,	B,	C,	D.	It	follows	that	the	frieze	pattern	has	symmetry	group fmg.

Figure	5.5.6

Observe	that	the	situation	for	frieze	patterns	is	very	different	from	rosette	patterns	in	the	follow-
ing	crucial	way: there	are	infinitely	many	distinct	rosette	groups, but	only	seven	frieze	groups.
This	is	an	amazing	fact. In	a	sense, the	greater	geometric	complexity	of	frieze	patterns	restricts
how	they	can	be	constructed. There	does	not	seem	to	be	any	simple	intuitive	reason	for	the
number	of	frieze	groups, namely	seven; it	simply	comes	out	of	the	mathematical	details.

Exercise 5.5.3. For	each	of	the	frieze	patterns	shown	in	Figure 5.5.7, state	the	answers	to
Questions	A–D,	and	state	what	symmetry	group	it	has.
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Figure	5.5.7

Exercise 5.5.4. Find	and	photocopy 7 frieze	patterns, all	with	different	symmetry	groups.
For	each	of	the	frieze	patterns	you	find, state	the	answers	to	Questions	A–E,	and	state	what
symmetry	group	it	has.
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Exercise 5.5.5. The	mathematician	John	H.	Conway	has	come	up	with	the	following	de-
scriptive	names	for	the	seven	frieze	groups, each	one	based	on	a	form	of	bodily	motion:
hop, jump, step, sidle, spinning	hop, spinning	jump	and	spinning	sidle. Perform	each	type
of	motion	(part	of	the	problem	is	figuring	out	what	each	motion	is), and	look	at	your	foot-
prints. The	footprints	from	each	motion	form	a	frieze	pattern. Match	up	these	footprint	frieze
patterns	with	the	seven	listed	in	Table 5.5.2.

5.6 Wallpaper	Patterns

The	last, and	most	interesting, of	our	three	types	of	ornamental	patterns	are	wallpaper	patterns.
Though	wallpaper	patterns	are	more	complicated	technically	than	frieze	patterns, here	too	we
will	be	able	to	state	a	complete	classification	of	the	symmetry	groups	that	arise. Once	again	it
would	be	beyond	the	scope	of	this	book	to	include	all	the	details	of	the	demonstrations.
A wallpaper	pattern is	any	planar	object	that	has	translation	symmetry	subject	to	two	condi-

tions: (1)	the	translation	symmetries	are	not	all	in	parallel	directions; and	(2)	there	is	a	smallest
translation	symmetry	in	any	possible	direction	for	which	there	is	translation	symmetry. Addi-
tionally, we	assume	that	at	every	center	of	rotation	of	the	wallpaper	pattern	there	is	a	smallest
clockwise	rotation	symmetry. In	Figure 5.6.1, Parts (i)	and	(ii)	are	wallpaper	patterns. Part (iii)	is
not	a	wallpaper	pattern	because	all	translation	symmetries	are	in	parallel	directions, and	Part (iv)
is	not	a	wallpaper	pattern	because	it	has	no	smallest	translation	symmetry	in	the	vertical	direc-
tion. This	last	example	shows	that	not	everything	you	might	put	on	a	wall	is	called	a	“wallpaper
pattern”	in	the	technical	sense.

Just	as	a	frieze	pattern	had	to	“go	on	forever”	in	order	to	have	translation	symmetry, the	same
holds	for	a	wallpaper	pattern, except	that	wallpaper	patterns	go	on	forever	in	all	directions, not
just	one. Of	course, any	picture	we	draw	of	a	wallpaper	pattern	will	not	go	on	forever, but	that
is	simply	the	result	of	our	human	limitations. We	will	understand, however, that	even	though
our	pictures	of	wallpaper	patterns	do	not	go	on	forever, we	should	think	of	wallpaper	patterns
as	extending	beyond	just	what	is	drawn, and	going	on	forever.
One	contrast	between	how	we	draw	wallpaper	patterns	and	frieze	patterns	is	that	frieze	pat-

terns	were	always	drawn	horizontally	(for	convenience), whereas	for	a	wallpaper	pattern	there
is	no	one	particular	direction	that	can	be	singled	out	and	made	horizontal.
Our	ultimate	goal	 for	wallpaper	patterns	 is	 just	 like	our	goal	 for	 frieze	patterns, namely	to

classify	wallpaper	patterns	according	to	their	symmetry	groups. We	proceed	very	much	as	we
did	with	frieze	patterns, namely	first	examining	each	of	the	four	types	of	isometries	as	applied
to	wallpaper	patterns. As	with	frieze	patterns, we	do	not	need	to	say	anything	about	transla-
tion	symmetry	of	wallpaper	patterns, because	every	wallpaper	pattern	must	have	 translation
symmetry, subject	to	certain	restrictions.
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Figure	5.6.1

Let	us	start	by	examining	rotation	symmetry	of	wallpaper	patterns. As	with	 frieze	patterns,
a	wallpaper	pattern	might	or	might	not	have	rotation	symmetry. The	wallpaper	pattern	in	Fig-
ure 5.6.2 (i)	has	no	rotation	symmetry	(other	than	the	identity); the	wallpaper	pattern	in	Fig-
ure 5.6.2 (ii)	has	rotation	symmetry	by 120◦ or	by 240◦ about	the	points	labeled A, B and C

(and	about	all	similar	points); the	wallpaper	pattern	in	Figure 5.6.2 (iii)	has	rotation	symmetry
by 90◦, 180◦ or 270◦ about	the	points	labeled X and Y (and	all	similar	points), and	rotation
symmetry	by 180◦ about	the	point	labeled Z (and	all	similar	points). We	therefore	see	that	in
contrast	to	frieze	patterns, where	rotation	symmetry	can	only	be	by 180◦, for	wallpaper	patterns
rotation	symmetry	can	be	by	a	variety	of	angles; moreover, different	centers	of	rotation	in	the
same	wallpaper	pattern	can	have	different	angles	of	rotation.

If	we	look	at	the	wallpaper	pattern	shown	in	Figure 5.6.2 (iii), we	see	three	centers	of	rotation,
labeled X, Y and Z respectively. Of	course, the	wallpaper	pattern	has	other	centers	of	 rota-
tion, besides	the	three	that	are	labeled. Indeed, because	wallpaper	patterns	repeat	themselves
infinitely, if	a	wallpaper	pattern	has	one	center	of	rotation, then	it	has	infinitely	many	centers	of
rotation. It	would, therefore, be	silly	for	us	to	attempt	to	find	literally	all	the	centers	of	rotation
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(i)                                                                                       (ii)

(iii)           

Figure	5.6.2

of	a	given	wallpaper	pattern. What	we	can	hope	to	find	are	all	the	“generically	different”	types
of	centers	of	rotation	of	a	wallpaper	pattern. We	make	this	concept	precise	as	follows.
Suppose	we	are	given	a	wallpaper	that	has	centers	of	rotation. We	say	that	 two	centers	of

rotation	of	the	wallpaper	pattern	are equivalent if	there	is	a	symmetry	of	the	wallpaper	pattern
that	takes	one	center	of	rotation	to	the	other	(the	symmetry	could	be	any	of	the	four	types	of
isometries). In	Figure 5.6.3, we	see	four	centers	of	rotation	labeledA,B,C, andD. The	pointsA
and B are	equivalent	centers	of	rotation, because	reflection	in	the	vertical	line	halfway	between
them	is	a	symmetry	of	the	wallpaper	pattern	that	takes A to B. On	the	other	hand, no	two	of
the	pointsA, C andD are	equivalent, because	no	symmetry	of	the	wallpaper	pattern	takes	one
of	them	to	another.

In	general, for	any	center	of	rotation	of	a	wallpaper	pattern, we	can	look	for	all	the	centers	of
rotation	that	are	equivalent	to	it; all	such	centers	of	rotation	will	in	fact	be	equivalent	to	each
other	as	well. We	call	such	a	collection	of	equivalent	centers	of	rotation	an equivalence	class of
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A B

DC

Figure	5.6.3

centers	of	rotation. For	example, in	Figure 5.6.3, the	equivalence	class	of	the	center	of	rotation
C consists	of	all	points	that	are	in	the	middles	of	all	the	“bricks”	out	of	which	the	pattern	is
built. For	any	wallpaper	pattern, it	can	be	shown	that	the	collection	of	all	its	centers	of	rotation
can	be	broken	up	into	a	finite	number	of	equivalence	classes, which	will	be	disjoint	from	each
other. Now, with	this	notion	of	equivalence	classes, we	can	state	more	precisely	what	it	means
to	find	all	the	“generically	different”	types	of	centers	of	rotation	of	a	wallpaper	pattern. Given
a	wallpaper	pattern, what	we	want	to	find	is	precisely	one	center	of	rotation	per	equivalence
class. For	example, the	centers	of	rotation	labeled X, Y and Z in	Figure 5.6.2 (iii)	are	exactly
one	representative	from	each	equivalence	class	of	centers	of	rotation	for	this	wallpaper	pattern.
As	such, we	can	say	informally	that	we	have	found	“all	the	centers	of	rotation”	of	the	pattern.

Exercise 5.6.1. For	each	wallpaper	patterns	 shown	 in	Figure 5.6.4, find	and	 label	one
center	of	rotation	per	equivalence	class	(if	there	are	any).

To	make	sense	of	rotation	symmetry	of	wallpaper	patterns, we	need	to	recall	from	Section 5.4
the	notion	of	a	center	of	rotation	of	an	object	having	order n. Because	we	are	assuming	that	at
every	center	of	rotation	of	a	wallpaper	pattern	there	is	a	smallest	clockwise	rotation	symmetry,
then	every	center	of	rotation	of	a	wallpaper	pattern	has	some	order n, though	different	centers
of	rotation	of	a	given	wallpaper	pattern	can	have	different	orders. For	example, the	points A,
B and C in	Figure 5.6.2 (ii)	are	all	centers	of	rotation	of	order 3, and	the	points X, Y and Z in
Figure 5.6.2 (iii)	are	centers	of	rotation	of	orders 4, 4 and 2 respectively.
For	a	given	wallpaper	pattern, we	can	find	its	centers	of	 rotation	(that	 is, we	can	find	one

center	of	rotation	per	equivalence	class). Each	of	these	centers	of	rotation	has	an	order.
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(i)                                                                               (ii)

(iii)                                                                            (iv)

Figure	5.6.4

BEFORE YOU READ FURTHER:

Try	to	figure	out	which	numbers	can	occur	as	orders	of	centers	of	rotation	of	wallpaper
patterns. Are	all	numbers	possible, or	only	some? If	the	latter, which	numbers	occur?

We	know	from	the	examples	in	Figure 5.6.2 that 2, 3 and 4 can	occur	as	orders	of	centers	of
rotation	of	wallpaper	patterns. Are	there	any	other	numbers	possible? For	instance, is	it	possible
to	have	a	wallpaper	pattern	with	a	center	of	rotation	of	order 5? How	about 7, or 583? It	turns
out, quite	remarkably, that	there	are	very	few	possible	orders	for	centers	of	rotation	of	wallpaper
patterns, as	we	now	state.

Proposition 5.6.1. Every	center	of	rotation	of	a	wallpaper	pattern	has	order 2, 3, 4 or 6.

A rigorous	proof	of	the	above	proposition	uses	group	theory, and	is	beyond	the	scope	of	this
book. An	informal	discussion	of	why	this	result	is	true	can	be	found	in	[Wey52, pp.	101–103]. To
see	how	remarkable	Proposition 5.6.1 is, note	in	particular	that	it	means	that	there	cannot	be	a
wallpaper	pattern	with	a	center	of	rotation	of	order 5. Simply	arranging	pentagons	in	an	infinite
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grid, as	shown	in	Figure 5.6.5 (i)	will	not	yield	a	wallpaper	pattern	with	center	of	rotation	of	order
5, because	we	need	to	rotate	the	entire	plane, not	just	one	pentagon	at	a	time. In	Figure 5.6.5 (ii)
we	see	an	example	of	a	clever	Islamic	design	that	incorporates	pentagons, and	might	therefore
give	an	illusion	of	order 5 centers	of	rotation, but	it	is	only	an	illusion.

Figure	5.6.5

Given	a	wallpaper	pattern, we	can	look	for	the	different	centers	of	rotation	that	it	has. Each
center	of	rotation, if	there	are	any, has	an	order	that	is 2, 3, 4 or 6. We	now	want	to	define	the
order	for	the	whole	wallpaper	pattern. If	the	wallpaper	pattern	has	no	centers	of	rotation, then
we	say	that	the	wallpaper	pattern	is	of order 1. If	the	wallpaper	pattern	has	centers	of	rotation, we
say	that	the	wallpaper	pattern	is	of order n if n is	the	highest	order	found	among	the	centers	of
rotation	of	the	wallpaper	pattern. For	example, the	wallpaper	pattern	in	Figure 5.6.2 (i)	is	of	order
1; the	wallpaper	pattern	in	Figure 5.6.2 (ii)	is	of	order 3; the	wallpaper	pattern	in	Figure 5.6.2 (iii)
is	of	order 4.
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Exercise 5.6.2. Find	the	order	of	each	wallpaper	pattern	shown	in	Figure 5.6.4.

Exercise 5.6.3. Suppose	we	are	given	a	wallpaper	pattern. Suppose	further	that, among
its	centers	of	rotation, the	wallpaper	pattern	has	an	order 2 center	of	rotation	and	an	or-
der 3 center	of	rotation. From	this	partial	information, can	you	determine	the	order	of	the
wallpaper	pattern? If	yes, what	is	the	order, and	why?

We	turn	next	to	reflection	symmetry. As	previously	mentioned, in	contrast	to	frieze	patterns,
where	we	distinguished	between	vertical	and	horizontal	lines	of	reflection, for	wallpaper	pat-
terns	there	is	no	such	distinction, because	a	wallpaper	pattern	goes	on	forever	in	all	directions,
so	we	cannot	isolate	one	direction	as	“horizontal.” The	wallpaper	pattern	in	Figure 5.6.6 (i)	has
no	reflection	symmetry; the	wallpaper	patterns	in	Figure 5.6.6 (ii)	and	(iii)	both	have	reflection
symmetry, in	the	lines	indicated	(and	in	all	similar	lines). If	a	wallpaper	pattern	has	reflection
symmetry	in	some	line	of	reflection, then	it	will	necessarily	have	infinitely	many	lines, obtained
by	applying	the	translation	symmetry	of	the	wallpaper	pattern	to	the	original	line	of	reflection.
Although	the	wallpaper	patterns	in	Figure 5.6.6 (ii)	and	(iii)	both	have	reflection	symmetry, there
is	one	major	difference	between	the	reflection	symmetry	of	these	two	patterns, namely	that	all
the	lines	of	reflection	for	Part (ii)	are	parallel, whereas	the	lines	of	reflection	are	not	all	parallel
for	Part (iii).

If	a	wallpaper	pattern	has	one	line	of	reflection, then	it	has	infinitely	many	lines	of	reflection. As
was	the	case	with	centers	of	rotation, we	would	like	to	find	all	the	“generically	different”	types
of	lines	of	reflection	of	a	wallpaper	pattern; once	again, we	use	the	concept	of	equivalence.
Suppose	we	are	given	a	wallpaper	that	has	lines	of	reflection. We	say	that	two	lines	of	reflection
of	the	wallpaper	pattern	are equivalent if	there	is	a	symmetry	of	the	wallpaper	pattern	that	takes
one	line	of	reflection	to	the	other. In	Figure 5.6.7, we	see	three	lines	of	reflection	labeledm, n
and k. The	lines m and n are	equivalent	lines	of	reflection, because	rotation	in	the	center	of
rotation A shown	in	Figure 5.6.3 is	a	symmetry	of	the	wallpaper	pattern	that	takes m to n. On
the	other	hand, the	lines m and k are	not	equivalent, because	no	symmetry	of	the	wallpaper
pattern	takes m to k.

Given	a	wallpaper	pattern, and	a	line	of	reflection	for	this	wallpaper	patterns, we	can	look
for	all	the	lines	of	reflection	that	are	equivalent	to	it. We	call	such	a	collection	of	equivalent
lines	of	reflection	an equivalence	class of	lines	of	reflection. For	example, in	Figure 5.6.7, the
equivalence	class	of	 the	 line	of	 reflection m consists	of	all	vertical	 lines	of	 reflection	of	 the
wallpaper	pattern	(that	is, all	vertical	lines	that	are	boundaries	between	the	“bricks”). Given	a
wallpaper	pattern, what	we	want	to	find	is	precisely	one	line	of	reflection	per	equivalence	class.
For	example, the	lines	of	reflection	shown	in	Figure 5.6.6 (iii)	are	exactly	one	representative
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(i)                                                                         (ii)

(iii)  

Figure	5.6.6

m n

k

Figure	5.6.7

from	each	equivalence	class	of	lines	of	reflection	for	this	wallpaper	pattern. As	such, we	can	say
informally	that	we	have	found	“all	the	lines	of	reflection”	of	the	pattern.



5.6	Wallpaper	Patterns 195

Exercise 5.6.4. For	each	wallpaper	pattern	shown	in	Figure 5.6.4, find	and	label	one	line
of	reflection	per	equivalence	class	(if	there	are	any).

We	now	look	at	glide	reflection	symmetry	for	wallpaper	patterns. As	for	frieze	patterns, we
are	interested	only	in	non-trivial	glide	reflection	symmetry, that	 is, glide	reflection	symmetry
such	that	neither	the	translation	nor	the	reflection, that	together	constitute	the	glide	reflection
symmetry, is	alone	a	symmetry	of	the	wallpaper	pattern. Just	as	was	the	case	for	frieze	patterns,
if	a	wallpaper	pattern	has	a	line	of	glide	reflection	that	is	also	a	line	of	reflection, then	the	glide
reflection	symmetry	in	that	line	is	trivial. Moreover, it	turns	out	that	in	a	wallpaper	pattern, any
line	of	reflection	is	automatically	a	line	of	glide	reflection	(for	a	trivial	glide	reflection	symmetry);
the	reader	is	asked	to	supply	the	details	in	Exercise 5.6.5. Putting	these	observations	together,
we	see	that	to	find	a	non-trivial	glide	reflection	symmetry, we	need	to	find	a	line	of	glide	re-
flection	that	is	not	a	line	of	reflection. We	call	such	lines	of	glide	reflection non-trivial	lines	of
glide	reflection. The	wallpaper	pattern	in	Figure 5.6.8 (i)	has	no	glide	reflection	symmetry; the
wallpaper	pattern	in	Figure 5.6.8 (ii)	has	non-trivial	lines	of	glide	reflection	as	indicated	(note
that	the	vertical	lines	through	the	middle	of	the	letters M are	trivial	lines	of	glide	reflection).

(i)                                                                                  (ii)

Figure	5.6.8

Exercise 5.6.5. [Used	 in	This	 Section] Suppose	 that	 a	wallpaper	pattern	has	 a	 line	of
reflection. Show	 that	 this	 line	of	 reflection	must	also	be	a	 line	of	glide	 reflection	 (for	a
trivial	glide	reflection	symmetry). This	exercise	uses	ideas	from	Appendix C.

It	is	sometimes	tricky	in	practice	to	find	non-trivial	lines	of	glide	reflection	in	wallpaper	pat-
terns, certainly	trickier	than	it	is	to	find	centers	of	rotation	and	lines	of	reflection. Lines	of	glide
reflection	often	tend	to	be	“in	between”	features	of	 the	wallpaper	pattern, for	example	as	in
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Figure 5.6.8 (ii). More	precisely, if	a	line	of	glide	reflection	is	parallel	to	lines	of	reflection, then
it	must	be	halfway	between	the	lines	of	reflection. See	Exercise 5.6.6 for	details. Exercise 5.6.7
discusses	the	relation	between	a	line	of	glide	reflection	and	centers	of	rotation	not	on	it. Note,
however, that	lines	of	glide	reflection	need	not	be	parallel	to	any	lines	of	reflection, and	can	in
fact	intersect	lines	of	reflection; the	reader	is	asked	to	supply	an	example	in	Exercise 5.6.8.

Exercise 5.6.6. [Used	in	This	Section] Suppose	that	a	wallpaper	pattern	has	a	non-trivial
line	of	glide	reflection	that	is	parallel	to	lines	of	reflection. Show	that	the	line	of	glide	reflec-
tion	is	halfway	between	the	lines	of	reflection. This	exercise	uses	ideas	from	Appendix C.

Exercise 5.6.7. [Used	in	This	Section] Suppose	that	a	wallpaper	patterns	has	a	non-trivial
line	of	glide	reflection, and	it	has	a	center	of	rotation	that	is	not	on	the	line	of	glide	reflection.
Show	that	there	is	another	center	of	rotation	at	the	same	distance	from	the	line	of	glide
reflection, but	on	 the	other	 side	 (though	not	directly	 across	 from	 the	original	 center	of
rotation). This	exercise	uses	ideas	from	Appendix C.

Exercise 5.6.8. [Used	in	This	Section] Find	an	example	of	a	wallpaper	pattern	that	has
non-trivial	lines	of	glide	reflection	and	has	lines	of	reflection, and	such	that	the	non-trivial
lines	of	reflection	intersect	some	lines	of	reflection. There	is	such	an	example	among	the
wallpaper	patterns	shown	so	far	in	this	section, though	its	lines	of	reflection	and	lines	of
glide	reflection	are	not	shown.

Just	as	we	have	the	notion	of	equivalent	centers	of	rotation, and	equivalent	lines	of	reflec-
tion, we	have	the	same	notion	for	non-trivial	lines	of	glide	reflection. Suppose	we	are	given	a
wallpaper	that	has	non-trivial	lines	of	glide	reflection. We	say	that	two	non-trivial	lines	of	glide
reflection	of	the	wallpaper	pattern	are equivalent if	there	is	a	symmetry	of	the	wallpaper	pattern
that	takes	one	line	of	glide	reflection	to	the	other. In	Figure 5.6.9, we	see	three	non-trivial	lines
of	glide	reflection	labeled a, b and c. The	lines a and b are	equivalent	lines	of	glide	reflection,
because	reflection	in	the	vertical	line	halfway	between a and b is	a	symmetry	of	the	wallpaper
pattern	that	takes a to b. On	the	other	hand, the	lines a and c are	not	equivalent, because	no
symmetry	of	the	wallpaper	pattern	takes a to c.

Given	a	wallpaper	pattern, and	a	non-trivial	line	of	glide	reflection	for	this	wallpaper	patterns,
we	can	look	for	all	the	non-trivial	lines	of	glide	reflection	that	are	equivalent	to	it. We	call	such
a	collection	of	equivalent	non-trivial	lines	of	glide	reflection	an equivalence	class of	non-trivial
lines	of	glide	reflection. For	example, in	Figure 5.6.9, the	equivalence	class	of	the	line	of	glide
reflection a consists	of	all	vertical	non-trivial	lines	of	glide	reflection	of	the	wallpaper	pattern
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a b

c

Figure	5.6.9

(that	is, all	vertical	lines	that	are	halfway	between	the	vertical	lines	through	the	edges	of	the
“bricks”). For	a	given	wallpaper	pattern, we	want	to	find	precisely	one	non-trivial	line	of	glide
reflection	per	equivalence	class.

Exercise 5.6.9. For	 each	wallpaper	 pattern	 shown	 in	 Figure 5.6.4, find	 and	 label	 one
non-trivial	line	of	glide	reflection	per	equivalence	class	(if	there	are	any).

In	the	case	of	frieze	patterns, after	discussing	the	different	types	of	symmetries	that	could	occur,
we	were	led	to	four	questions	concerning	these	types	of	symmetries. We	follow	a	similar	plan
for	wallpaper	patterns, though	with	one	additional	question	that	does	not	have	an	analog	among
the	four	questions	we	had	for	frieze	patterns. Up	till	now	we	have	looked	separately	at	each	of
the	four	types	of	isometries	as	they	can	occur	as	symmetries	of	wallpaper	patterns. We	now
need	to	ask	one	question	concerning	how	these	different	types	of	symmetries	interact. Suppose
a	wallpaper	pattern	has	both	rotation	symmetry	and	reflection	symmetry. The	wallpaper	pattern
must	therefore	have	both	centers	of	rotation	and	lines	of	reflection.

BEFORE YOU READ FURTHER:

Suppose	that	a	wallpaper	pattern	has	both	centers	of	rotation	and	lines	of	reflection. Must
all	the	highest	order	centers	of	rotation	be	on	lines	of	reflection?

The	answer	to	the	above	question	is	that	in	some	wallpaper	patterns	the	highest	order	centers
of	rotation	are	all	on	lines	of	reflection, and	in	other	wallpaper	patterns	they	are	not. (Centers	of
rotation	that	are	not	the	highest	order	are	not	of	use	to	us	for	our	present	purpose.) For	example,
in	the	wallpaper	pattern	in	Figure 5.6.2 (iii), the	highest	order	centers	of	rotation	are	the	points
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labeledX and Y (they	are	order 4), and	both	these	points	are	on	lines	of	reflection. By	contrast, in
the	wallpaper	pattern	in	Figure 5.6.3, the	highest	order	centers	of	rotation	are	the	points	labeled
A, C and D (they	are	all	order 2); we	do	not	need	the	point B, because	it	is	equivalent	to A.
The	points C and D are	on	lines	of	reflection, but	the	point A is	not	on	a	line	of	reflection.
It	turns	out	that	we	now	have	everything	we	need	to	classify	wallpaper	patterns	according	to

their	symmetries. As	was	the	case	with	frieze	patterns, we	cannot	conveniently	list	all	the	sym-
metries	of	wallpaper	patterns, but	we	can	still	ask	which	types	of	symmetries	can	be	combined
with	each	other. In	particular, we	ask	the	following	five	questions	about	any	given	wallpaper
pattern.

Question	A: What	is	the	order	of	the	wallpaper	pattern? (Answer: 1, 2, 3, 4, or	6.)

Question	B: Is	there	reflection	symmetry? (Answer: Yes	or	No.)

Question	C: Is	there	reflection	symmetry	in	non-parallel	lines? (Answer: Yes	or	No.)

Question	D: Are	all	highest	order	centers	of	rotation	on	lines	of	reflection? (Answer: Yes	or	No.)

Question	E: Is	there	glide	reflection	in	non-trivial	lines	of	glide	reflection? (Answer: Yes	or	No.)

It	can	be	seen	that	there	are 5 · 2 · 2 · 2 · 2 = 80 possible	combinations	of	answers	to	these
questions. We	will	not	list	all 80 here. As	with	frieze	patterns, it	turns	out	that	most	of	these 80
cases	cannot	actually	occur. Hence, not	every	possible	type	of	symmetry	of	a	wallpaper	pattern
can	exist	in	combination	with	every	other	type	of	symmetry. We	will	not	go	over	the	details	of
how	to	eliminate	the	cases	that	cannot	occur; to	do	so	would	be	beyond	the	scope	of	this	book.
Some	cases	are	simple	to	eliminate, however, and	are	left	to	the	reader	in	Exercises 5.6.10 and
5.6.11.

Exercise 5.6.10. [Used	in	This	Section] Show	that	no	wallpaper	pattern	can	have	answers
1, yes	and	yes	to	Questions	A–C,	regardless	of	what	the	answers	to	Questions	D and	E are.
(We	can	therefore	eliminate	the	combinations	of	answers 1YYNNN, 1YYNNY, 1YYNYN,
1YYNYY, 1YYYNN, 1YYYNY, 1YYYYN, 1YYYYY.)

Exercise 5.6.11. [Used	in	This	Section] Show	that	no	wallpaper	pattern	can	have	answers
3, yes	and	no	to	Questions	A–C,	regardless	of	what	the	answers	to	Questions	D and	E are.
Similarly, show	that	no	wallpaper	pattern	can	have	answers 4, yes	and	no, or	answers 6,
yes	and	no, to	Questions	A–C.	List	all	the	combinations	of	answers	to	Questions	A–E that
can	therefore	be	eliminated.

After	all	the	impossible	combinations	of	answers	to	Questions	A–E are	eliminated, it	turns	out
that	there	are 17 combinations	of	answers	that	do	occur. Moreover, all	wallpaper	patterns	that
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have	the	same	answers	have	the	same	symmetry	groups, and	each	of	these 17 combinations	of
answers	corresponds	to	a	different	symmetry	group. (The	proof	of	these	facts	uses	some	advanced
mathematics	that	is	beyond	the	scope	of	this	book.) In	sum, there	are	precisely 17 symmetry
groups	of	wallpaper	patterns, known	as	the wallpaper	groups. The	wallpaper	groups	are	often
denoted	with	the	symbols p1, pg, pm, cm, p2, pgg, pmg, cmm, pmm, p3, p31m, p3m1,
p4, p4g, p4m, p6 and p6m. (There	are	other	sets	of	symbols	that	various	authors	use, but	the
symbols	we	have	used	seem	to	be	the	most	common; as	for	the	symbols	used	to	denote	the
frieze	groups, there	is	a	rationale	for	the	wallpaper	group	symbols, but	it	is	not	worth	dwelling
upon.) The	reason	for	the	number 17 is	no	more	intuitively	obvious	than	the	reason	that	there
are	precisely	seven	frieze	groups; in	both	cases	it	comes	out	of	the	mathematical	analysis. We
summarize	the	classification	of	the	symmetry	groups	of	wallpaper	patterns	as	follows.

Proposition 5.6.2 (Classification	of	Wallpaper	Patterns). The	symmetry	group	of	any	wallpaper
pattern	is	one	of	the 17 groups	listed	in	Table 5.6.1.

Questions
Name A B C D E
p1 1 N N N N
pg 1 N N N Y
pm 1 Y N N N
cm 1 Y N N Y
p2 2 N N N N
pgg 2 N N N Y
pmg 2 Y N N Y
cmm 2 Y Y N Y
pmm 2 Y Y Y N
p3 3 N N N N
p31m 3 Y Y N Y
p3m1 3 Y Y Y Y
p4 4 N N N N
p4g 4 Y Y N Y
p4m 4 Y Y Y Y
p6 6 N N N N
p6m 6 Y Y Y Y

Table	5.6.1

An	example	of	each	of	the 17 types	of	wallpaper	patterns	is	given	in	Figures 5.6.10 and	5.6.11
(the	first	of	these	figures	shows	all	the	wallpaper	patterns	of	orders 1 and 2, and	the	second	of
the	figures	shows	all	the	wallpaper	patterns	of	orders 3, 4 and 6).
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p1                                                     pg                                                     pm 

cm                                                     p2                                                    pgg 

pmg                                                cmm                                                pmm 

Figure	5.6.10

Though	the 17 wallpaper	groups	were	treated	mathematically	only	in	the	late	19th	century,
they	seem	to	have	been	known	on	some	intuitive	level	earlier. For	example, wallpaper	patterns
for	all	these	groups	can	be	found	in	the	Alhambra in	Granada, Spain, which	was	built	during
the	9th–14th	centuries. See	Figure 5.6.12 for	one	such	pattern. The	Alhambra	was	built	by	the
Arab	rulers	who	controlled	part	of	Spain	at	the	time. Because	Islam forbids	the	use	of	represen-
tational	pictures, Muslim	artists	excelled	at	geometric	designs. (It	should	be	noted	that	Arabic
culture was	generally	more	advanced	mathematically	than	the	European	culture	during	the	Mid-
dle	Ages. Moreover, during	the	Renaissance, the	Europeans	learned	much	Greek	mathematics
through	Arabic	translations. The	Arabic	culture	has	not	always	been	given	the	credit	it	deserves
in	these	matters. It	is	not	clear	(to	the	author, anyway)	whether	the	designers	of	the	Alhambra	ac-
tually	knew	explicitly	that	there	were	seventeen	different	types	of	symmetry	configurations	that
a	wallpaper	pattern	could	have, or	whether	they	were	simply	so	good	at	designing	geometric
patterns	that	they	managed	to	find	all	of	them	by	accident. As	a	side	note, the	Dutch	artist	M.	C.
Escher was	inspired	to	make	his	own	repeating, interlocking	figures	after	visiting	the	Alhambra,
as	his	notebooks	show. It	is	claimed	in	[Wey52]	that	the	ancient	Egyptians	had	found	wallpaper
patterns	of	all 17 types; many	other	cultures, including	China	and	various	peoples	in	Africa,
also	excel	at	geometric	design.

Let	us	now	use	Table 5.6.1 to	analyze	the	symmetries	of	the	wallpaper	pattern	in	Figure 5.6.13.
First, we	find	the	centers	of	rotation. The	pointsA, B and C in	Figure 5.6.13 are	three	centers	of
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p3                                                  p31m                                                 p3m1

p4                                                    p4g                                                    p4m 

p6                                                   p6m       

Figure	5.6.11

rotation, and	all	others	are	equivalent	to	these. All	these	centers	of	rotation	have	order 2, so	the
wallpaper	has	order 2. Next, we	ask	if	the	pattern	has	reflection	symmetry. The	answer	is	yes.
The	next	question	is	whether	there	is	reflection	symmetry	in	non-parallel	lines. Because	there
are	both	horizontal	and	vertical	lines	of	reflection, the	answer	is	yes. Fourth, we	ask	if	all	highest
order	centers	of	rotation	are	on	lines	of	reflection. All	three	of A, B and C are	highest	order	(in
this	case	order 2), but	because C is	not	on	a	line	of	reflection, the	answer	to	this	question	is	no.
Finally, we	ask	whether	the	wallpaper	pattern	has	glide	reflection	symmetry	in	non-trivial	lines
of	glide	reflection. The	answer	is	yes, as	the	reader	should	verify. Looking	at	Table 5.6.1 leads
us	to	conclude	that	the	wallpaper	pattern	has	symmetry	group cmm.

Exercise 5.6.12. For	each	of	the	wallpaper	patterns	shown	in	Figure 5.6.14, state	the	an-
swers	to	Questions	A–E,	and	state	what	symmetry	group	it	has.
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Figure	5.6.12

Figure	5.6.13
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Figure	5.6.14
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Exercise 5.6.13. Find	and	photocopy 4 wallpaper	patterns, all	with	different	 symmetry
groups. For	each	of	the	wallpaper	patterns	you	find, state	the	answers	to	Questions	A–E,
and	state	what	symmetry	group	it	has.

Exercise 5.6.14. Draw 4 wallpaper	patterns, all	with	different	symmetry	groups. (If	you	are
also	doing	Exercise 5.6.13, then	make	sure	the	wallpaper	patterns	you	draw	have	different
symmetry	groups	than	the	ones	you	found	and	photocopied.) For	each	of	the	wallpaper
patterns	you	draw, state	the	answers	to	Questions	A–E,	and	state	what	symmetry	group	it
has.

5.7 Three	Dimensional	Symmetry

Having	so	far	discussed	the	symmetry	of	planar	objects	in	this	chapter, we	turn	briefly	to	a	look
at	symmetry	of	three	dimensional objects	(that	is, spatial	objects). The	study	of	symmetry	of	three
dimensional	objects	is	in	many	ways	similar	to	the	study	of	symmetry	we	have	seen	for	planar
objects, though	it	is	more	complicated, and	we	will	mention	only	a	few	ideas, and	will	not	give
a	thorough	treatment	as	we	did	for	planar	objects. For	some	interesting	issues	concerning	spatial
objects, see	[Wey52].
Just	as	 the	study	of	symmetry	of	planar	objects	 is	based	on	the	notion	of	 isometries	of	 the

plane, the	study	of	the	symmetry	of	three	dimensional	objects	(which	we	will	refer	to	as	“three
dimensional	symmetry”)	is	based	on	isometries	of	three	dimensional	space. As	such, a	thorough
treatment	of	 three	dimensional	symmetry	would	commence	with	an	examination	of	all	pos-
sible	types	of	isometries	of	three	dimensional	space. Rather	than	giving	a	complete	treatment
of	isometries	in	three	dimensional	space, which	would	be	very	lengthy, we	will	look	at	a	few
examples	of	symmetries	of	three	dimensional	objects, starting	with	the	symmetries	of	the	cube,
analogously	to	what	we	did	in	Section 5.2, where	we	looked	at	the	symmetries	of	the	regular
polygons. We	point	out, without	going	into	the	details, that	all	the	basic	ideas	about	isometries
and	symmetries	that	hold	for	 the	plane	have	analogs	for	three	dimensional	space; for	exam-
ple, the	composition	of	two	symmetries	of	a	three	dimensional	object	is	still	a	symmetry	of	the
object, etc.
In	Figure 5.7.1 we	see	a	cube, with	its	vertices	labeled	(just	as	we	labeled	the	vertices	of	regular

polygons	in	Section 5.2). As	with	regular	polygons, there	are	no	translation	or	glide	reflections
symmetries	of	 the	cube	(though	other	 three	dimensional	objects	can	have	such	symmetries).
Clearly	the	identity	isometry	of	three	dimensional	space, denoted I as	in	the	planar	case, is	a
symmetry	of	the	cube. Let	us	now	try	to	find	all	the	non-trivial	rotation	symmetries	of	the	cube.
In	the	plane, each	rotation	is	performed	about	a	point, called	the	center	of	rotation, which	is
fixed	by	the	rotation. In	three	dimensional	space, by	contrast, each	rotation	is	performed	around
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a	line, called	the axis	of	rotation. There	is	one	slight	complication	involving	rotation	in	three
dimensional	space, however. In	the	plane, we	used	the	convention	that	rotation	by	a	positive
angle	is	taken	to	be	clockwise. We	could	adopt	this	convention	because	we	can	all	distinguish
between	clockwise	and	counterclockwise	rotations. In	three	dimensional	space, suppose	we
want	to	rotate	about	a	given	axis	of	rotation	by	a	given	positive	angle. In	which	direction	should
we	rotate? There	are	two	possibilities	for	rotating	by	the	given	positive	angle	about	the	given
axis	of	rotation, and	we	need	to	find	a	way	to	specify	which	one	is	to	be	used. The	method
for	solving	this	problem	is	that	every	axis	of	rotation	will	be	given	a	direction, specified	by	an
arrowhead, as	seen	for	example	on	line a in	Figure 5.7.2. We	then	adopt	the	convention	that
we	will	consider	clockwise	rotation	about	the	line	to	be	the	direction	of	rotation	that	appears
clockwise	when	we	look	from	the	tail	of	the	arrow	toward	the	head	of	the	arrow. We	say	that
such	rotation	follows	the	right	hand	rule. That	is, we	consider	clockwise	rotation	about	a	line
with	an	arrowhead	to	be	the	direction	given	by	curling	the	fingers	of	your	right	hand, when	you
place	your	thumb	parallel	to	the	axis	of	rotation, and	in	the	direction	of	the	arrowhead. This
right	hand	rule	is	used	regularly	in	physics.
Using	 the	above	considerations	 in	 the	case	of	 the	cube, we	see	 in	Figure 5.7.2 a	 rotation

symmetry	of	 the	cube, namely	rotation	by 1/4 turn	around	 the	 line	 labeled a, which	 is	 the
vertical	line	through	the	center	of	the	cube. Notice	that	the	rotation	is	clockwise	when	viewed
from	above	 the	cube, which	 is	 looking	 in	 the	direction	of	 the	arrowhead	 shown	on	 line a.
Rotation	by 1/2 and 3/4 around	 line a are	 also	 symmetries	of	 the	 cube. We	denote	 these
symmetries	by Ra

1/4, R
a
1/2 and R

a
3/4 respectively. These	are	all	the	non-trivial	rotation	symmetries

around	line a.

B C

DA
F G

HE

Figure	5.7.1

BEFORE YOU READ FURTHER:

Try	to	find	as	many	rotation	symmetries	of	the	cube	as	possible.

What	are	the	other	axes	of	rotation	of	the	cube? There	are	two	more	that	are	very	similar	to a,
namely	the	“front-to-back”	horizontal	line b through	the	center	of	the	cube	that	is	perpendicular
to	the	square ADHE, and	the	“left-to-right”	horizontal	line c through	the	center	of	the	cube
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B C

DA

a

F G

HE

A B

CD
E F

GH

R1/4
a

Figure	5.7.2

that	is	perpendicular	to	the	square ABFE. Then Rb
1/4, R

b
1/2, R

b
3/4, R

c
1/4, R

c
1/2 and Rc

3/4 are	all
non-trivial	rotation	symmetries	of	the	cube.
There	are	also	other	types	of	axes	of	rotation	of	the	cube. The	lines a, b and cwere	through	the

centers	of	opposing	square	faces. There	are	also	axes	of	rotation	through	midpoints	of	opposing
edges. For	example, in	Figure 5.7.3 (i)	we	see	the	line	that	goes	through	the	midpoints	of AB

and HG, pointing	in	the	direction	of	the	midpoint	of HG; this	line	is	denoted d. Then Rd
1/2

is	a	symmetry	of	the	cube. (Observe	that Rd
1/4 and Rd

3/4 are	not	symmetries	of	the	cube.) There

are	five	other	similar	axes	of	rotation: the	line e that	goes	through	the	midpoints	of BC and
EH; the	line f that	goes	through	the	midpoints	of CD and E F; the	line g that	goes	through
the	midpoints	ofAD and FG; the	line h that	goes	through	the	midpoints	ofAE and CG; and
the	line i that	goes	through	the	midpoints	of DH and BF; in	all	cases	the	lines	point	in	the
direction	of	the	midpoint	of	the	second	listed	edge. Hence Re

1/2, R
f
1/2, R

g

1/2, R
h
1/2 and Ri

1/2 are
symmetries	of	the	cube.

B C

DA

d j

F G

HE

B C

DA
F G

HE

(i)                                                           (ii)

Figure	5.7.3
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There	are	also	axes	of	rotation	through	opposing	vertices	of	the	cube. For	example, in	Fig-
ure 5.7.3 (ii)	we	see	the	line	that	goes	through	the	verticesA andG, pointing	in	the	direction	of
G; this	line	is	denoted j. Then Rj

1/3 and R
j

2/3 are	symmetries	of	the	cube. There	are	three	other
similar	axes	of	rotation: the	line k that	goes	through B and H; the	line l that	goes	through C

and E; and	the	line m that	goes	through D and F; in	all	cases	the	lines	point	in	the	direction
of	the	second	listed	vertex. Hence Rk

1/3, R
k
2/3, R

l
1/3, R

l
2/3, R

m
1/3 and Rm

2/3 are	symmetries	of	the
cube. We	now	have	a	complete	list	of	rotation	symmetries	of	the	cube.
Next, we	turn	to	reflection	symmetries	of	the	cube. In	the	plane, we	reflected	in	a	line, called

the	line	of	reflection. In	three	dimensional	space, we	reflect	in	a	plane, called	the plane	of	re-
flection. That	reflection	of	three	dimensional	space	is	in	a	plane	is	quite	reasonable	intuitively—
mirrors	are	planes!

BEFORE YOU READ FURTHER:

Try	to	find	as	many	reflection	symmetries	of	the	cube	as	possible.

Referring	to	the	cube	shown	in	Figure 5.7.1, it	is	evident	that	the	cube	has	reflection	symmetry
in	the	plane	that	goes	through	the	center	of	the	cube	and	is	parallel	to	the	top	(ABCD)	and	the
bottom	(EFGH). Call	this	plane p, and	denote	reflection	in	this	plane	by Mp. There	are	two
other	similar	planes	of	reflection: the	plane q that	goes	through	the	center	of	the	cube	and	is
parallel	to	the	left	side	(ABFE)	and	the	right	side	(DCGH); and	the	plane r that	goes	through
the	center	of	the	cube	and	is	parallel	to	the	front	(ADHE)	and	the	back	(BCGF). ThenMq and
Mr are	symmetries	of	the	cube.
There	is	another	collection	of	planes	of	reflection	of	the	cube. For	example, let s denote	the

plane	containing	the	edges AB and GH. ThenMs is	a	reflection	symmetry	of	the	cube. There
are	five	other	similar	planes	of	reflection: the	plane t containing	the	edges BC and EH; the
plane u containing	the	edges CD and E F; the	plane v containing	the	edges AD and FG;
the	plane w containing	the	edges AE and CG; and	the	plane x containing	the	edges BF and
DH. HenceMt,Mu,Mv,Mw andMx are	symmetries	of	the	cube. We	now	have	a	complete
list	of	reflection	symmetries	of	the	cube.
Have	we	now	found	all	the	symmetries	of	the	cube? It	might	at	first	appear	as	if	we	do	know

all	the	symmetries	of	the	cube, given	that	we	know	all	the	reflection	and	rotation	symmetries	of
the	cube, and	we	know	that	there	are	no	translation	or	glide	reflection	symmetries. However, in
three	dimensional	space, the	complete	list	of	types	of	isometries	is	not	just	translations, rotations,
reflections	and	glide	reflections. It	turns	out	that	there	are	two	additional	types	of	isometries	in
three	dimensional	space, called rotary	reflections and screws. Both	of	these	types	of	isometries
are	similar	to	glide	reflections, in	that	they	are	single	isometries	that	are	described	in	terms	of
two-step	processes. A rotary	reflection	is	the	result	of	first	rotating	around	an	axis	of	rotation,
and	then	reflecting	in	a	plane	that	is	perpendicular	to	the	axis	of	rotation; a	screw	is	the	result
of	first	 rotating	around	an	axis	of	 rotation, and	 then	 translating	 in	a	direction	parallel	 to	 the
axis	of	rotation. (See	[Mar82, Section	16.1]	for	a	thorough	discussion	of	the	isometries	of	three
dimensional	space, including	the	three	dimensional	analog	of	Proposition 4.6.1.)
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The	cube	does	not	have	any	screw	symmetries, but	it	does	have	rotary	reflection	symmetries.
For	example, consider	the	composition Mp ◦ Ra

1/4. This	composition	is	certainly	a	symmetry
of	 the	cube, being	 the	composition	of	 two	symmetries. However, by	using	drawings	 similar
to	Figure 5.7.2, it	can	be	verified	that	this	composition	is	not	equal	to	any	of	the	rotation	or
reflection	symmetries	we	have	listed	for	the	cube	(such	a	verification	would	entail	comparing	the
net	effect	ofMp ◦ Ra

1/4 with	the	net	effects	of	each	of	the	rotations	and	reflections	that	we	have
found; we	leave	the	details	to	the	reader). Hence, the	composition Mp ◦ Ra

1/4 is	a	symmetry
of	the	cube, and	is	not	equal	to	any	other	the	other	symmetries	that	we	have	seen	so	far. For
convenience, we	use	the	following	notation: If α is	an	angle, if a is	a	line	in	three	dimensional
space, and	if p is	a	plane	that	is	perpendicular	space, we	let Ca

α,m denote	the	rotary	reflection
that	consists	of	first	doing	the	rotation Ra

α, and	then	doing	the	reflection Mm. Hence, we	write
Ca

1/4,p as	an	abbreviation	forMp ◦ Ra
1/4. There	are	six	other	similar	rotary	reflection	symmetries

of	the	cube	that	can	be	obtained	by	compositions	of	rotation	and	reflections	symmetries	of	the
cube, and	these	are Ca

1/2,p, C
a
3/4,p, C

b
1/4,r, C

b
3/4,r, C

c
1/4,q, C

c
3/4,q.

The	reader	might	have	noticed	that	we	did	not	 include Cb
1/2,r and Cc

1/2,q in	 the	above	list
of	 rotary	 reflection	symmetries	of	 the	cube. These	 two	compositions	are	 indeed	valid	 rotary
reflection	symmetries	of	the	cube, but	it	turns	out	that	they	are	both	equal	to Ca

1/2,p. (Again, the
reader	can	verify	that	these	three	compositions	have	the	same	net	effects.) Actually, the	net	effect
of	these	three	compositions	is	a	particularly	nice	symmetry	of	the	cube. See	Figure 5.7.4 for	the
composition Ca

1/2,p. Observe	that	the	net	effect	takes	each	vertex, and	moves	it	to	the	location
diametrically	opposite	it	with	respect	to	the	center	of	the	cube. Let O denote	the	center	of	the
cube. The	isometry	that	takes	every	point	in	three	dimensional	space	and	sends	it	to	the	point
diametrically	opposite	it	with	respect	toO is	called inversion inO. Let JO denote	this	isometry.
From	now	on, instead	of	writing Ca

1/2,p we	will	write JO. It	turns	out	that JO can	be	obtained

in	 six	additional	ways	as	 rotary	 reflections; each	of Mu ◦ Rd
1/2, Mv ◦ Re

1/2, Ms ◦ Rf
1/2,

Mt ◦ R
g

1/2, Mx ◦ Rh
1/2 and Mw ◦ Ri

1/2 is	equal	to JO.

We	are	still	not	finished	looking	for	rotary	reflection	symmetries	of	the	cube. Certainly, one
can	obtain	a	rotary	reflection	symmetry	of	the	cube	by	composing	a	rotation	symmetry	of	the
cube	with	a	reflection	symmetry	of	the	cube	(as	long	as	the	plane	of	reflection	is	perpendicular
to	the	axis	of	rotation). However, not	all	rotary	reflection	symmetries	of	the	cube	are	obtained
that	way. It	is	also	possible	to	form	a	rotary	reflection	symmetry	of	the	cube	where	the	rotary	re-
flection	is	the	composition	of	a	rotation	and	a	reflection, neither	of	which	alone	is	a	symmetry	of
the	cube, but	their	composition	is. (A similar	phenomemon	occurred	when	we	studied	glide	re-
flection	symmetry	of	frieze	patterns	and	wallpaper	patterns.) For	example, let j̄ denote	the	plane
containing	the	center	of	the	cube	that	is	perpendicular	to	the	line j (shown	in	Figure 5.7.3 (ii)).
Then	neither Rj

1/6 nor Mj̄ is	a	symmetry	of	the	cube, but	the	composition Mj̄ ◦ R
j

1/6, abbre-

viated	as	before	by Cj

1/6,̄j
, is	in	fact	a	symmetry	of	the	cube. The	net	effect	of	this	symmetry	is

shown	in	Figure 5.7.5. There	are	seven	other	similar	rotary	reflection	symmetries	of	the	cube,
and	these	are Cj

5/6,̄j
, Ck

1/6,k̄
, Ck

5/6,k̄
, Cl

1/6,̄l
, Cl

5/6,̄l
, Cm

1/6,m̄, C
m
5/6,m̄.
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B C

DA
F G

HE

D A

BC
H E

FG

H E

FG
D A

BC

R
1/2

Mp

R
1/2

a
Mp C

1/2, p° =

a

a

Figure	5.7.4

B C

DA
F G

HE

F B

CG
E A

DH

R
1/6

j
M j C

1/6, j° =
j

Figure	5.7.5

We	now, finally, have	a	complete	list	of	symmetries	of	the	cube:

I, Ra
1/4, R

a
1/2, R

a
3/4, R

b
1/4, R

b
1/2, R

b
3/4, R

c
1/4, R

c
1/2, R

c
3/4, R

d
1/2, R

e
1/2,

Rf
1/2, R

g

1/2, R
h
1/2, R

i
1/2, R

j

1/3R
j

2/3, R
k
1/3, R

k
2/3, R

l
1/3, R

l
2/3, R

m
1/3, R

m
2/3,

Mp,Mq,Mr,Ms,Mt,Mu,Mv,Mw,Mx, JO, C
a
1/4,p, C

a
3/4,p,

Cb
1/4,r, C

b
3/4,r, C

c
1/4,q, C

c
3/4,q, C

j

1/6,̄j
, C

j

5/6,̄j
, Ck

1/6,k̄, C
k
5/6,k̄, C

l
1/6,̄l, C

l
5/6,̄l, C

m
1/6,m̄, C

m
5/6,m̄.
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Clearly, this	list	of	symmetries	is	much	larger, and	more	complicated, than	the	list	of	symmetries
of	the	square, which	is	the	two	dimensional	analog	of	the	cube	(the	cube	has 48 symmetries,
versus 8 for	the	square). Nonetheless, we	see	that	for	three	dimensional	objects	it	is	possible	to
form	complete	lists	of	symmetries; in	other	words, we	can	form	the	symmetry	groups of	three
dimensional	objects	just	as	we	did	for	planar	objects. Moreover, we	can	form	the	compositions	of
symmetries	of	an	object	in	three	dimensional	space, and	in	principle	we	could	form	composition
tables for	three	dimensional	objects	just	as	we	did	for	regular	polygons	in	Sections 5.2 and	5.3. In
practice	forming	such	an	operation	table	would	be	very	time	consuming—for	the	cube	we	would
have	a 48×48 table, which	would	have 2304 entries—and	so	we	will	not	actually	construct	such
tables. In	Exercise 5.7.1 the	reader	is	asked	to	compute	the	compositions	of	various	symmetries
of	the	cube; these	calculations	compute	some	of	the	entries	of	the	composition	table	for	the
cube. The	bottom	line	is	that	symmetry	of	three	dimensional	objects	can	be	studied	similarly	to
the	study	of	planar	objects, but	three	dimensional	objects	are	a	good	bit	more	complicated.

Exercise 5.7.1. For	the	cube, compute	the	following	symmetries	(that	is, express	each	as	a
single	symmetry).

(1) R
j

1/3 ◦ Ra
1/4.

(2) Mp ◦ Rc
1/4.

(3) Ms ◦ Mp.

(4) Mq ◦ Ca
1/4,p.

Exercise 5.7.2. For	each	of	the	following	polyhedra, list	all	of	its	symmetries. Use	pictures
or	words	to	describe	the	axes	of	rotation	and	planes	of	symmetry.

(1) A pyramid	over	a	square.

(2) A prism	over	an	equilateral	triangle, where	the	sides	are	rectangles, but	not	squares.

(3) A regular	tetrahedron.

(4) A regular	octahedron.

Exercise 5.7.3. How	many	symmetries	does	the	prism	over	a	regular n-gon	have? Assume
that	 the	 sides	of	 the	prism	are	 rectangles, but	not	 squares. (You	do	not	need	 to	 list	 the
symmetries, just	count	them.)
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Exercise 5.7.4. What	is	the	relation	between	the	symmetries	of	a	convex	polygon	and	the
symmetries	of	its	dual?

In	the	plane, we	studied	the	symmetry	of	various	classes	of	objects: regular	polygons, rosette
patterns, frieze	patterns	and	wallpaper	patterns. Are	there	analogs	for	such	classes	of	objects
in	three	dimensional	space? The	answer	is	definitely	yes. A particularly	interesting	class	of	ob-
jects	in	three	dimensional	space	is	the	analog	of	wallpaper	patterns, that	is, patterns	in	three
dimensional	space	that	have	translation	symmetry	in	at	least	three	different	directions	(where
not	all	directions	are	in	a	single	plane). Such	patterns	are	called crystals, because	of	the	fact
that	the	molecules	in	chemical	crystals, such	as	salt	(NaCl), align	themselves	in	a	lattice-like
form	that	corresponds	exactly	to	the	notion	of	having	translation	symmetry	in	three	different
directions	in	three	dimensional	space. The	study	of	chemical	crystals	is	called	crystallography,
and	the	symmetry	groups	of	mathematical	crystals	are	called	the crystallographic	groups (also
known	as	the space	groups). The	crystallographic	groups	can	be	classified	analogously	to	the
classification	of	frieze	groups	and	wallpaper	groups, although	the	classification	is	much	more
complicated. There	are 230 crystallographic	groups	(in	contrast	to 17 wallpaper	groups). The
crystallographic	groups	were	first	completely	classified	in	1891	by	Evgraf	Stepanovich	Fedorov
(1853-1919)	and	Arthur	Schoenflies (1853-1928), each	working	independently	of	the	other. See
[Sen90]	for	more	details	about	the	crystallographic	groups.
Although	 the	 symmetry	group	of	 the	cube	 is	much	 larger	and	more	complicated	 than	 the

symmetry	group	of	the	square, there	is	one	similarity	between	these	two	symmetry	groups	that
we	can	observe. In	the	symmetry	group	of	 the	square, half	 the	symmetries	are	rotations	(we
consider I to	be	a	trivial	rotation), and	half	are	reflections. As	we	saw	in	Section 5.4, this	equal
split	between	rotations	and	reflections	holds	for	all	rosette	groups	that	have	reflection	symme-
try. Notice	in	particular	that	rotations	preserve	orientation and	reflections	reverse	orientation.
Hence, for	any	rosette	group, half	the	symmetries	are	orientation	preserving	and	half	are	orien-
tation	reversing. Now, in	the	case	of	the	cube, the	symmetry	group	contains	not	only	rotations
and	reflections, but	also	rotary	reflections. However, it	still	is	the	case	for	the	cube	that	half	of
its	symmetries	are	orientation	preserving	(the	rotations), and	half	are	orientation	reversing	(the
reflections	and	the	rotary	reflections). In	fact, it	turns	out	that	any	finite	symmetry	group	for	an
object	in	three	dimensional	space	(and	actually	in	any	dimensional	space), either	consists	of	all
orientation	preserving	symmetries, or	half	its	symmetries	are	orientation	preserving	and	half	are
orientation	reversing. The	demonstration	of	this	fact	is	outlined	in	Exercise 5.7.5.
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Exercise 5.7.5. [Used	in	This	Section] Our	goal	is	to	show	that	for	any	finite	symmetry	group
for	an	object	in	three	dimensional	space, precisely	one	of	the	following	situations	holds:
either	all	the	symmetries	are	orientation	preserving, or	half	the	symmetries	are	orientation
preserving	and	half	are	orientation	reversing. We	will	make	use	of	the	following	two	facts
about	isometries	that	we	have	seen	for	the	plane, and	which	in	fact	hold	true	in	three	(or
higher)	dimensional	space; we	will	not	be	able	to	demonstrate	these	two	facts—that	would
require	more	technicalities	than	we	are	using. First, the	analog	of	Proposition 4.4.3 holds
in	three	dimensions. Second, every	isometry	has	an	inverse.
Suppose G is	a	finite	symmetry	group	for	an	object	in	three	dimensional	space. The	argu-
ment	has	a	number	of	steps, most	of	which	have	something	for	the	reader	to	do.

(1) Suppose	that A, B and C are	symmetries	in G, and	that A ̸= B. Show	that C ◦
A ̸= C ◦ B.

(2) If G has	all	orientation	preserving	symmetries, then	there	is	nothing	to	demonstrate,
so	assume	from	now	on	that	not	all	symmetries	inG are	orientation	preserving. Show
that G has	both	orientation	preserving	and	orientation	reversing	symmetries.

(3) Let {A1, A2, . . . , An} denote	the	orientation	preserving	symmetries	 in G, and	let
{B1, B2, . . . , Bm} denote	the	orientation	reversing	symmetries	in G, where n and
m are	some	positive	integers. Our	goal	is	to	show	that n = m, which	will	imply
that G has	the	same	number	of	orientation	preserving	symmetries	and	orientation
reversing	symmetries.

(4) Consider	the	collection	of	symmetries {B1 ◦ A1, B1 ◦ A2, . . . , B1 ◦ An}. Show
that	these	symmetries	are	all	distinct.

(5) Show	that	all	the	symmetries {B1 ◦ A1, B1 ◦ A2, . . . , B1 ◦ An} are	orientation
reversing.

(6) Deduce	 that	 every	 one	of {B1 ◦ A1, B1 ◦ A2, . . . , B1 ◦ An} is	 contained	 in
{B1, B2, . . . , Bm}.

(7) Deduce	that n ≤ m.

(8) Use	similar	ideas	to	show	that	all	the	symmetries {B1 ◦ B1, B1 ◦ B2, . . . , B1 ◦ Bm}

are	distinct, and	all	are	contained	in {A1, A2, . . . , An}. Deduce	that m ≤ n.

(9) Because	we	have	seen	that n ≤ m and	that m ≤ n, it	follows	that n = m, which
is	what	we	needed	to	show.

Finally, we	are	now	in	a	position	to	clarify	something	left	unfinished	in	Section 3.3, where
we	discussed	the	semi-regular	polyhedra. In	particular, we	listed	all	such	polyhedra	(in	Propo-
sition 3.3.1), and	we	mentioned	that	all	except	one	of	them	(the	pseudorhombicuboctahedron)
satisfied	a	stronger	property	called	vertex	transitivity. We	could	not	define	this	property	in	Sec-
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tion 3.3, but	we	now	have	the	necessary	tool	for	the	definition, namely	symmetry. A polyhedron
is	said	to	be vertex	transitive if, given	any	two	vertices v and w of	the	polyhedron, there	is	a
symmetry	of	the	polyhedron	that	takes v to w.
For	 example, we	 claim	 that	 the	prism	over	 a	 regular	 pentagon	 is	 vertex	 transitive. In	 Fig-

ure 5.7.6 we	see	a	prism	over	a	regular	pentagon. To	show	that	this	prism	is	vertex	transitive, we
need	to	show	that	for	any	two	vertices	of	the	prism, there	is	a	symmetry	of	the	prism	taking	one
vertex	to	the	other. Consider	the	vertices	labeledA and B, as	seen	in	Figure 5.7.6. Observe	that
rotation	by 1/5 of	a	turn	around	the	vertical	line	through	the	center	of	the	prism	is	a	symmetry	of
the	prism, and	this	symmetry	takes	vertex A to	vertex B. Rotation	by −1/5 of	a	turn	takes B to
A. To	take	vertexA to	vertex C, as	seen	in	the	figure, we	need	the	rotary	reflection	obtained	by
first	rotating	by 2/5 of	a	turn	around	the	vertical	line	through	the	center	of	the	prism, and	then
reflecting	in	the	plane	that	is	parallel	to	the	top	and	bottom	pentagons, and	is	halfway	between
them. Using	these	ideas, it	is	seen	that	for	any	two	vertices	of	the	prism, there	is	a	symmetry	of
the	prism	taking	one	vertex	to	the	other. Hence	this	prism	is	vertex	transitive.

A B

C

Figure	5.7.6

It	can	be	shown	that	all	of	the	semi-regular	polyhedra	other	than	the	pseudorhombicubocta-
hedron	are	vertex	transitive; we	omit	the	details. By	contrast, the	pseudorhombicuboctahedron
is	not	vertex	transitive. In	Figure 5.7.7 (i)	we	see	the	pseudorhombicuboctahedron, with	three
of	its	vertices	labeled. There	is, for	example, no	symmetry	of	the	pseudorhombicuboctahedron
that	 takes	vertex A to	vertex B. Hence, the	pseudorhombicuboctahedron	 is	not	vertex	 tran-
sitive. (That	does	not, however, mean	that	no	vertex	of	the	pseudorhombicuboctahedron	can
be	taken	by	a	symmetry	to	another	vertex; for	example, rotation	by 1/4 turn	around	the	verti-
cal	line	through	the	center	of	the	pseudorhombicuboctahedron	in	Figure 5.7.7 (i)	takes	vertex
A to	vertex C.) By	way	of	comparison, observe	that	 for	the	rhombicuboctahedron	shown	in
Figure 5.7.7 (ii), reflection	in	 the	horizontal	plane	through	the	center	of	 the	polyhedron	is	a
symmetry	of	the	rhombicuboctahedron	that	takes	vertex A to	vertex B.

Some	 texts	add	 the	property	of	 vertex	 transitivity	 to	 the	definition	of	 semi-regular	 (though
we	do	not), and	if	they	do, then	they	do	not	consider	the	pseudorhombicuboctahedron	to	be
semi-regular, and	they	have	only	13	Archimedean	solids.



214 5. Symmetry	of	Planar	Objects	and	Ornamental	Patterns

AA

B B

CC

(i)                                                            (ii)

Figure	5.7.7



6
Groups

6.1 The	basic	idea

At	the	start	of	Chapter 4 we	read	a	quote	by	Herman	Weyl which	ended:

To	a	certain	degree	this	scheme	is	typical	for	all	theoretic	knowledge: We	begin
with	some	general	but	vague	principle	(symmetry	in	the	first	sense), then	find	an
important	case	where	we	can	give	that	notion	a	concrete	precise	meaning	(bilateral
symmetry), and	from	that	case	we	gradually	rise	again	to	generality, guided	more	by
mathematical	construction	and	abstraction	than	by	the	mirages	of	philosophy; and
if	we	are	lucky	we	end	up	with	an	idea	no	less	universal	than	the	one	from	which
we	started. Gone	may	be	much	of	its	emotional	appeal, but	it	has	the	same	or	even
greater	unifying	power	in	the	realm	of	thought	and	is	exact	instead	of	vague.”

In	the	present	chapter, the	last	in	our	book, we	now	indeed	rise	to	the	level	of	mathematical
generality, and	unifying	power, to	which	Weyl	was	referring. At	first	it	might	not	be	apparent
what	the	material	in	this	chapter	has	to	do	with	symmetry, but	we	will	make	the	connection
clear	in	our	very	last	section, Section 6.6.
In	this	chapter	we	will	discuss	the	mathematical	concept	of	a	group. Unlike	the	colloquial	us-

age	of	this	word, to	a	mathematician	a	group	is	a	very	precisely	defined	concept, as	will	be	seen
below. Though	at	first	glance	groups	appear	to	be	very	abstract, like	all	worthwhile	abstraction
they	are	based	on	concrete	examples. Indeed, it	is	the	extremely	broad	range	of	examples	of
groups	that	have	led	the	group	concept	to	be	considered	very	central	to	modern	mathematics.
The	theory	of	groups, though	less	than	200	years	old, is	highly	developed, with	new	discoveries
being	made	all	the	time. Groups	are	extremely	useful	in	everything	from	geometry	to	chemistry;
in	particular, groups	are	vital	 to	 the	study	of	 symmetry, and	 it	 is	 for	 this	 reason	 that	we	dis-
cuss	them	here. Further, the	methodology	of	group	theory	epitomizes	the	abstract	approach	of
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modern	mathematics	(as	spearheaded	earlier	in	this	century	by	the	great	mathematician	Emmy
Noether), and	this	chapter’s	excursion	into	the	abstract	should	be	seen	as	a	taste	of	what	many
mathematicians	do	today.
Consider	the	integers −3,−2,−1, 0, 1, 2, 3 . . .. We	will	use	the	standard	abbreviation Z to

denote	 the	 set	of	 integers. The	word	“set” is	 simply	 the	commonly	used	mathematical	 term
to	mean	a	“collection”	of	 things, in	 this	case	numbers, though	a	set	could	contain	any	type
of	object, not	 just	numbers. (The	 letter	Z,	by	 the	way, stands	 for	 the	German	word	Zahlen,
which	means	numbers.) If	all	we	could	do	with	 the	 integers	would	be	 to	write	 them	down,
they	would	be	entirely	useless. What	makes	the	integers	so	useful	is	that	we	can	combine	them,
via	addition, subtraction, multiplication	and	division. Actually, subtraction	is	just	doing	addition
“backwards,” and	division	is	just	multiplication	“backwards,” so	we	really	need	to	consider	only
addition	and	multiplication. (What	does 5 − 3 mean? It	means	the	number	that	you	add	to 3
to	get 5, namely 2.) We	will	consider	each	of	the	two	operations, addition	and	multiplication,
separately. Each	of	these	operations	is	referred	to	as	a binary	operation,
in	that	it	takes	two	things	(in	this	case	numbers)	as	inputs, and	gives	one	output	(in	this	case

also	a	number).
What	properties	can	we	ascribe	to	the	operation	of	addition	as	applied	to	the	integers? Some

of	these	properties	may	seem	so	obvious	as	to	be	hardly	worth	mention, but	their	value	will	be
apparent	later	on. (It	might	be	the	simplicity	of	these	properties	that	caused	mathematicians	to
take	so	long	to	focus	in	on	them.) First, we	note	that	if	we	take	any	two	integers	and	add	them,
we	get	another	integer. We	call	this	property	the closure property	of	the	integers	with	respect
to	addition. To	appreciate	the	worth	of	this	property, note	that	if	you	take	any	two	integers	and
divide	one	by	the	other, you	will	most	likely	not	get	an	integer, for	example 3 divided	by 2.
Next, suppose	you	want	to	add	any	three	integers, for	example 2, 3 and 7. Because	we	can

formally	add	only	two	integers	at	a	time, we	have	to	group	the	integers 2, 3 and 7 with	paren-
theses	to	prescribe	the	order	of	addition. If	we	keep	these	three	integers	in	the	given	order, we
see	that	there	are	two	ways	of	grouping	them, namely (2 + 3)+ 7 and 2+ (3+ 7). The	former
says	to	add 2 and 3 first, and	then	to	add 7 to	the	result; the	latter	says	to	add 3 and 7 first,
and	then	to	add 2 to	the	result. Of	course, we	get	the	same	final	answer	in	both	cases, in	that
(2 + 3) + 7 = 5 + 7 = 12 and 2 + (3 + 7) = 2 + 10 = 12. Indeed, because	we	get	the
same	answer	both	ways, it	is	safe	to	drop	the	parentheses	and	simply	write 2 + 3 + 7, letting
each	person	do	the	addition	any	way	she	chooses. We	can	state	this	property	more	generally
by	saying	that	for	any	three	integers a, b and c, we	always	have (a+ b) + c = a+ (b+ c).
We	call	this	property	the associative property	for	the	integers	with	respect	to	addition.
If	you	were	asked	to	chose	the	single	most	important	integer, which	would	you	choose? Al-

though	 each	 person	may	 have	 a	 personal	 favorite	 number, mathematically	 the	 uncontested
leader	 of	 the	 pack	 is	 the	 number	 zero. Of	 its	many	 properties, 0 is	 the	 only	 number	 that,
when	added	to	any	other	number, leaves	the	other	number	unchanged. For	example, we	have
5 + 0 = 5. To	put	this	more	generally, for	any	integer a, we	have a + 0 = a and 0 + a = a.
We	call	this	property	of 0 the identity property	for	the	integers	with	respect	to	addition.
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One	way	of	obtaining 0 is	by	adding	any	 integer	 and	 its	negative. For	 example, we	have
5 + (−5) = 0. More	generally, for	any	integer a, we	have a+ (−a) = 0 and (−a) + a = 0.
Note	that	these	equations	hold	whether a is	positive, negative	or 0. The	essential	point	here	is
that	for	any	integer a, there	is	another	integer, namely −a, that	“cancels a out.” We	call	this
property	the inverses property	of	the	integers	with	respect	to	addition.
Although	the	above	four	properties	of	the	integers	and	addition	are	the	most	crucial	ones	for

our	purpose, there	 is	one	more	property	we	will	mention, which, though	well	known, turns
out	to	be	less	central	than	the	properties	mentioned	so	far. This	additional	property, called	the
commutative property, says	that	the	order	of	addition	does	not	matter. For	example, we	have
5 + 3 = 3 + 5. In	general, for	any	two	integers a and b, we	always	have a+ b = b+ a.
To	 summarize, we	 see	 that	 the	 integers	 together	with	 the	 operation	 addition, symbolized

(Z,+), satisfy	the	four	fundamental	properties	of	closure, associativity, identity	and	inverses, as
well	as	the	additional	property	of	commutativity. The	integers	with	addition	satisfy	a	number	of
other	properties	as	well, but	after	looking	at	many	other	mathematical	systems, mathematicians
found	that	these	four	properties	are	extremely	prevalent	in	many	seemingly	unrelated	fields, from
geometry	to	quantum	mechanics, and	have	therefore	chosen	to	focus	on	these	four	properties.
Let	us	look	at	some	other	mathematical	systems, to	see	if	they	satisfy	the	same	properties	as

the	integers	with	addition. The	next	most	obvious	example	to	consider	is	the	integers	with	the
operation	multiplication, abbreviated (Z, ·). We	need	to	check	whether	the	four	properties	of
closure, associativity, identity	and	inverses, as	well	as	the	commutative	property, hold	for (Z, ·).
Let	us	start	with	closure. It	is	certainly	the	case	that	if	we	multiply	any	two	integers	we	get	an
integer, so	 the	closure	property	holds. It	 is	also	not	hard	 to	see	 that	 the	associative	property
holds, that	is, for	any	three	integers a, b and c, it	is	always	true	that (a · b) · c = a · (b · c).
What	about	the	identity	property? We	need	to	find	a	special	member	of	the	integers	that	plays
the	same	role	with	respect	to	multiplication	that 0 does	for	addition; in	other	words, we	need
a	number	so	 that	multiplying	by	 it	does	not	change	anything. Certainly	 the	number 1 is	 the
integer	we	want. If a is	any	integer, then 1 · a = a and a · 1 = a. Hence 1 is	the	identity	for
the	integers	with	multiplication, and	so	the	identity	property	holds	for (Z, ·). Next, we	need	to
verify	whether	the	inverses	property	holds	for (Z, ·). This	means	that	for	every	integer, we	need
to	find	another	integer	that	cancels	it	out	by	multiplication, yielding 1. Let	us	try	this	for	the
integer 2. There	is	certainly	a	number	that	cancels 2 out	with	respect	to	multiplication, namely
1/2, because 2 ·(1/2) = 1 and (1/2) ·2 = 1. There	is	a	major	problem	here, however, because
we	are	dealing	with	the	integers, and 1/2 is	not	an	integer. There	is	certainly	no	other	number
that	cancels 2 out	with	respect	to	multiplication, so	we	have	to	conclude	that 2 does	not	have	a
multiplicative	inverse	in	the	integers. (The	number 2 does	have	an	additive	inverse, namely−2,
but	that	does	not	help	us	here.) Hence, we	see	that (Z, ·) does	not	have	the	inverses	property.
Therefore, even	though (Z, ·) satisfies	the	first	three	properties	that (Z,+) satisfies, it	does	not
satisfy	the	fourth	property. It	is	not	hard	to	see	that	the	commutative	property	holds	for (Z, ·),
that	is, for	any	two	integers a and b, it	is	always	true	that a · b = b · a.
The	problem	 that	occured	with (Z, ·) might	 suggest	 to	you	where	we	can	find	something

that	does	satisfy	all	five	properies	with	respect	to	multiplication. The	number 1/2 is	not	in	the
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integers, but	it	is	a	fraction, so	why	don’t	we	look	at	the	set	of	all	fractions, denoted Q. (The
letter Q stands	for	quotient.)

BEFORE YOU READ FURTHER:

Try	to	figure	out	whether (Q, ·) satisfy	the	closure, associative, identity, inverses	and	com-
mutative	properties.

Just	as	with (Z, ·), it	is	not	hard	to	see	that (Q, ·) satisfies	the	closure, associativity	and	identity
properties	(once	again 1 is	the	identity	with	respect	to	multiplication). But	this	time, unlike	the
integers, it	seems	that	there	are	multiplicative	inverses. For	any	fraction, the	fraction	that	cancels
it	out	by	multiplication	is	just	the	reciprocal	of	the	original	fraction. For	example, the	reciprocal
of 5/3 is 3/5, and	sure	enough (5/3) · (3/5) = 1 and (3/5) · (5/3) = 1. So	it	appears	as	if
(Q, ·) has	the	inverses	property. Almost, but	there	is	still	one	little	glitch. The	number 0 can	be
considered	as	a	fraction, say 0/1. Unfortunately, the	fraction 0/1 has	no	reciprocal, because
we	would	want	to	use 1/0, but	that	is	not	allowed	because	we	cannot	divide	by 0. It	follows
that	the	fraction 0/1 does	not	have	a	multiplicative	inverse. However, the	number 0 is	the	only
problem, because	any	fraction	that	does	not	equal 0 does	have	a	reciprocal. We	will	bypasss	this
problem	caused	by 0 as	follows. Let	us	use	the	symbolQ∗ to	denote	the	set	of	fractions	with	the
number 0 removed. Then, if	we	put	all	the	above	reasoning	together, we	see	that (Q∗, ·) does
satisfy	the	four	properties	of	closure, associativity, identity	and	inverses. Moreover, because	the
order	of	multiplication	of	two	numbers	does	not	matter, for	example 4 · 7 = 7 · 4, we	see	that
(Q∗, ·) also	satisfies	the	commutative	property.

Exercise 6.1.1. Determine	which	of	the	five	properties	of	closure, associativity, identity,
inverses	and	commutativity	are	satisfied	by	each	of	the	following	systems.

(1) The	even	integers	with	addition.

(2) The	odd	integers	with	addition.

(3) All	real	numbers	with	addition.

(4) All	real	numbers	with	multiplication.

6.2 Clock	arithmetic

So	far	we	have	been	concerned	with	various	sets	of	numbers, such	as	integers	and	fractions. All
these	sets	have	been	infinite. We	now	wish	to	examine	a	mathematical	system	that	is	finite	in
size. This	mathematical	system	is	based	on	the	idea	of	“clock	arithmetic,” which	you	may	have
seen; if	you	have	not, it	will	be	sufficient	that	you	have	seen	a	clock. All	our	references	to	time
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will	be	based	on	the	American 12 hour	system	(though	we	will	ignore	a.m.	vs.	p.m.), as	opposed
to	the 24 hour	system	used	many	other	places	around	the	world	(and	the	U.S.	military); either
time	system	would	work	for	our	purpose, and	we	have	simply	chosen	one	of	them	once	and	for
all	to	avoid	any	ambiguity.
Say	it	is 2 o’clock, and	you	want	to	know	what	time	it	will	be	in 3 hours. A silly	question, you

may	be	thinking, because	the	time	in	three	hours	is	simply 2 + 3 = 5 o’clock. Right, but	now
suppose	it	is 7 o’clock, and	you	want	to	know	what	the	time	will	be	in 6 hours. You	could	go
7 + 6 = 13, but	you	wouldn’t	say 13 o’clock, because	there	is	no	such	thing; you	would	say
1 o’clock, of	course, and	you	would	be	right. How	did	you	get 1 o’clock? You	subtracted 12
from 13, because 13was	greater	than 12, and	therefore	too	large. Now, suppose	it	is 11 o’clock,
and	you	want	to	know	what	time	it	will	be	after 30 hours	(again, ignoring	a.m.	and	p.m.). You
would	start	by	going 11 + 30 = 41, but	once	again	this	is	too	large, because	you	cannot	have
41 o’clock. The	only	“o’clocks”	you	can	have	are	from 1 to 12 (rounding	off	to	whole	hours,
as	we	are	doing). Therefore, you	want	to	take 41 and	“bring	it	down”	to	between 1 and 12. To
do	this, you	want	to	subtract	from 41 as	many	copies	of 12 as	you	can. The	best	you	can	do	is
subtract 3 times 12, which	is 36. Now, we	compute 41 − 36 = 5, so	if	you	start	at 11 o’clock
and	go	another 30 hours, you	end	up	at 5 o’clock.

Exercise 6.2.1. If	you	start	at 7 o’clock, and	go	another 20 hours, what	time	will	it	be?

Let	us	now	look	more	carefully	at	what	we	just	did; we	will	drop	the	“o’clocks”	for	conve-
nience. There	were	two	things	we	wanted	to	accomplish, which	seemed	somewhat	at	odds	with
each	other: on	the	one	hand, we	wanted	to	restrict	ourselves	to	the	integers 1 through 12. On
the	other	hand, we	wanted	to	be	able	to	add	numbers, which	took	us	outside	of	the 1 to 12
range. To	resolve	the	problem, we	took	any	number	that	was	outside	of	the 1 to 12 range, and
reduced	it	repeatedly	by 12 until	we	were	back	in	the	desired	range. For	example, we	reduced
13 to 1 by	subtracting 12, and	we	reduced 41 to 5 by	subtracting 3 times 12. In	other	words,
we	are	essentially	considering 13 and 1 as	equivalent	(from	the	point	of	view	of	clocks), and 41
and 5 are	considered	equivalent.
We	are	therefore	led	to	a	new	notion, called congruence	mod 12. We	say	that	two	integers

are congruent	mod 12 if	they	differ	by	an	integer	multiple	of 12. Therefore, we	say	that 13 and
1 are	congruent	mod 12, and	that 41 and 5 are	congruent	mod 12. On	the	other	hand, the
numbers 17 and 3 are	not	congruent	mod 12 because	their	difference	is 14, which	is	not	an
integer	multiple	of 12. The	numbers 5 and 29 are	congruent	mod 12, because	their	difference
is 5− 29 = −24 = (−2) · 12.
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Exercise 6.2.2. Which	of	the	following	pairs	of	numbers	are	congruent	mod 12?

(1) 15 and 3;

(2) 9 and 57;

(3) 7 and −5;

(4) 11 and 1;

(5) 0 and 12.

For	the	sake	of	brevity, we	introduce	the	following	notation. If	integers a and b are	congruent
mod 12, we	write	this a ≡ b (mod 12). For	example, we	have 41 ≡ 5 (mod 12). If a and b

are	not	congruent	mod 12, we	write a ̸≡ b (mod 12). For	example, we	have 3 ̸≡ 7 (mod 12).
From	the	clock	example, we	noticed	that	any	integer	whatsoever	could	be	reduced	by	multi-

ples	of 12 until	what	is	left	is	somewhere	from 1 through 12. Hence, if	we	are	interested	only
in	integers	mod 12, then	we	need	to	consider	only 1 through 12, because	anything	else	can	be
reduced	to	one	of	these	numbers. For	ease	of	use	later	on, we	will	make	one	small	change	at	this
point. Instead	of	considering	the	integers	from 1 to 12, we	will	switch	to	the	integers	from 0 to
11. This	change	has	no	substantial	effect, because 0 ≡ 12 (mod 12). Any	integer	whatsoever
can	be	reduced	by	multiples	of 12 until	what	is	left	is	an	integer	from 0 through 11. In	other
words, for	any	 integer	whatsoever, there	 is	another	 integer, this	 time	 from 0 to 11, which	 is
congruent	mod 12 to	the	original	integer; moreover, there	is	only	one	such	integer	from 0 to 11.
In	symbols, for	any	integer a, there	is	a	unique	integer x from 0 to 11 so	that x ≡ a (mod 12).
For	example, if	we	let a = 13, then x = 1, because 1 ≡ 13 (mod 12). If a = 35, then x = 11,
because 11 ≡ 35 (mod 12). If a = 12, then x = 0, because 0 ≡ 12 (mod 12). Note	that
the	number a need	not	be	positive. If a = −4, then x = 8, because 8 ≡ (−4) (mod 12).
Additionally, note	that	if a = 7, then x = 7 as	well, because 7 is	already	between 0 to 11.

Exercise 6.2.3. For	each	integer a given	below, find	the	integer x from 0 to 11 so	that
x ≡ a (mod 12).

(1) a = 18;

(2) a = 41;

(3) a = −17;

(4) a = 3.

We	are	now	led	to	the	following	method	for	constructing	a	new	mathematical	system, which
simply	encapsulates	what	we	do	when	we	tell	time. Our	system	will	have	twelve	objects, de-
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noted 0̂, 1̂, 2̂, 3̂, 4̂, 5̂, 6̂, 7̂, 8̂, 9̂, 1̂0, 1̂1. The	collection	of	these	twelve	objects	will	be	denoted
Z12. We	put	the	“hat”	on	these	objects	to	indicate	that, although	they	correspond	to	the	integers
from 0 through 11, they	do	not	behave	exactly	like	the	integers	to	which	they	correspond. The
difference	is	in	how	we	add	the	elements	in Z12. Let	us	start	with	some	examples. To	add 3̂ and
4̂ is	easy; it	is	simply 3̂+4̂ = 7̂. On	the	other	hand, we	cannot	say	that 6̂+8̂ is 1̂4, because	there
is	no	such	thing	as 1̂4 in Z12. So, as	on	a	clock, what	we	do	is	to	reduce 14 by	integer	multiples
of 12. More	concisely, we	want	to	find	an	integer	from 0 to 11 that	is	congruent	mod 12 to 14.
The	number	is	clearly 2, and	so	we	say 6̂+8̂ = 2̂. In	general, if â and b̂ are	two	numbers	in Z12,
to	find â+ b̂ we	first	find a+b as	usual; if a+b is	from 0 to 11, we	put	a	hat	over	it, and	that
is	our	answer; if a+ b is	larger	than 11, we	find	an	integer x from 0 to 11 so	that x ≡ (a+ b)

(mod 12), and	then	let â + b̂ = x̂. For	example, we	have 3̂ + 7̂ = 1̂0, and 7̂ + 9̂ = 4̂, and
2̂ + 0̂ = 2̂. It	should	be	clear	that	although	we	use	the	usual	“+”	sign	to	denote	“addition”	in
Z12, this	operation	is	not	the	same	as	standard	addition	of	integers, because	we	reduce	mod 12.
(It	would	be	sensible	to	put	a	“hat”	on	the + sign	that	we	use	for Z12, similarly	to	the	hat	we
put	on 0̂, 1̂, 2̂, . . ., 1̂1, but	it	is	not	standard	to	do	so, and	we	will	stick	with	standard	notation.)

Exercise 6.2.4. Calculate	the	following.

(1) 4̂ + 5̂;

(2) 7̂ + 8̂;

(3) 5̂ + 1̂1;

(4) 0̂ + 3̂.

We	are	interested	in	the	system (Z12,+). One	helpful	tool	for	understanding	this	system	is
a	device	that	helped	us	learn	multiplication	as	children, namely	multiplication	tables, such	as
Table 6.2.1, which	shows	multiplication	up	to 10.
This	table	summarizes	explicitly	all	possible	multiplications	between	integers	from 1 to 10.

For	example, to	find 3 · 7, look	in	the	row	labeled 3, and	the	column	labeled 7, and	in	the
intersection	of	this	row	and	this	column	we	find 21, just	as	expected.
We	can, similarly, make	an	addition	table	for (Z12,+), shown	in	Table 6.2.2. For	example,

to	find 4̂ + 9̂, look	in	the	row	labeled 4̂, and	the	column	labeled 9̂, and	in	the	intersection	of
this	row	and	this	column	we	find 1̂, which	is 4̂ + 9̂. Notice	the	cyclic	pattern	in	the	table.
We	now	ask	whether (Z12,+) the	same	five	properties	(discussed	in	Section 6.1)	that (Z,+)

satisfies. The	closure	property	holds	for (Z12,+), because	the	way+was	defined	forZ12 insures
that	adding	any	two	elements	inZ12 yields	another	element	inZ12. As	for	associativity, with	a	bit
of	thought	it	is	not	hard	to	see	that	because	the	standard	addition	for	the	integers	is	associative,
the	addition	of Z12 is	also	associative; we	will	omit	the	details.
To	see	that	the	identity	property	holds, we	note	that 0̂ plays	the	role	of	an	identity	element,

because	for	any â in Z12, it	is	seen	that â+ 0̂ = â and 0̂ + â = â.
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· 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90
10 10 20 30 40 50 60 70 80 90 100

Table	6.2.1

What	about	 inverses? You	might	 think	at	first	 that	 there	cannot	be	 inverses, because	 there
are	no	negative	numbers	in Z12. But	negative	is	a	relative	term	(depending	on	your	set, your
operation	and	your	zero), and	in	fact	there	are	inverses	in (Z12,+). Let	us	start	with 1̂. What,
if	anything, is	 its	 inverse	 in (Z12,+)? In	other	words, is	 there	an	element	 in Z12 that, when
added	to 1̂, yields 0̂. Recalling	that 0 ≡ 12 (mod 12), we	see	that	the	number	that	cancels
1̂ out	is	precisely 1̂1, because 1 + 11 = 12, and	therefore 1̂ + 1̂1 = 0̂. It	is	not	hard	to	see
that	every	element	in Z12 has	an	inverse	with	respect	to	addition. For	example, the	inverse	of
5̂ is 7̂, because 5 + 7 = 12, and	therefore 5̂ + 7̂ = 0̂. Hence, the	inverses	property	holds	for
(Z12,+). It	is	not	hard	to	see	that	the	commutative	property	also	holds	for (Z12,+), for	example
5̂ + 6̂ = 6̂ + 5̂. We	have	therefore	verified	that (Z12,+) satisfies	the	same	five	properties	as
(Z,+).

Exercise 6.2.5. Find	the	inverses	with	respect	to	addition	of 3̂, 6̂, 8̂ and 0̂ in Z12.

We	can	also	make	a	multiplication	table	for Z12, shown	in	Table 6.2.3.
Notice	 that	 the	multiplication	 table	 for Z12 does	not	 have	 the	 same	 simple	pattern	 along

upward-sloping	lines	as	did	the	addition	table	for Z12. Moreover, note	that	in	the	addition	table,
each	of 0̂, 1̂, . . . , 1̂1 appears	once	and	only	once	in	each	row	and	in	each	column; this	property
does	not	hold	for	the	multiplication	table. All	told, multiplication	for Z12 is	not	as	well	behaved
as	addition. See	Exercise 6.2.6 for	details.

Exercise 6.2.6. Which	of	the	five	properties	(closure, associativity, identity, inverses, com-
mutativity)	holds	for (Z12, ·)? For	those	elements	of Z12 that	have	inverses	with	respect	to
multiplication, state	what	their	inverses	are.
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+ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 1̂0 1̂1

0̂ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 1̂0 1̂1

1̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 1̂0 1̂1 0̂

2̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 1̂0 1̂1 0̂ 1̂

3̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 1̂0 1̂1 0̂ 1̂ 2̂

4̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 1̂0 1̂1 0̂ 1̂ 2̂ 3̂

5̂ 5̂ 6̂ 7̂ 8̂ 9̂ 1̂0 1̂1 0̂ 1̂ 2̂ 3̂ 4̂

6̂ 6̂ 7̂ 8̂ 9̂ 1̂0 1̂1 0̂ 1̂ 2̂ 3̂ 4̂ 5̂

7̂ 7̂ 8̂ 9̂ 1̂0 1̂1 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂

8̂ 8̂ 9̂ 1̂0 1̂1 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂

9̂ 9̂ 1̂0 1̂1 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂

1̂0 1̂0 1̂1 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂

1̂1 1̂1 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 1̂0

Table	6.2.2

6.3 The	Integers	Mod n

In	Section 6.2 we	based	our	discussion	on	the	number	twelve	because	of	our	familiarity	with
clocks. We	can, however, repeat	the	whole	procedure	with	any	other	positive	integer	replacing
12. Choose	any	positive	integer n. We	say	that	any	two	integers	are congruent	mod n if	they
differ	by	some	integer	multiple	of n. In	symbols, suppose a and b are	integers. We	say	that a
and b are	congruent	mod n, written a ≡ b (mod n), if a−b = kn for	some	integer k (which
could	be	positive, negative	or	zero). If a and b are	not	congruent	mod n, we	write a ̸≡ b

(mod n). For	example, say	we	choose n = 5. Then 17 and 2 are	congruent	mod 5, written
17 ≡ 2 (mod 5), because 17 − 2 = 15 = 3 · 5, which	is	an	integer	multiple	of 5. Also, we
have 3 ≡ 11 (mod 4) because 3−11 = −8 = (−2) ·4. However, we	have 13 ̸≡ 2 (mod 9),
because 13− 2 = 11, which	is	not	a	multiple	of 9.

Exercise 6.3.1. Which	of	the	following	are	true, and	which	are	false?

(1) 3 ≡ 9 (mod 2);

(2) 7 ≡ (−1) (mod 8);

(3) 4 ≡ 11 (mod 3);

(4) 0 ≡ 24 (mod 6).

(5) 9 ≡ 9 (mod 5).
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· 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 1̂0 1̂1

0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂ 0̂

1̂ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 8̂ 9̂ 1̂0 1̂1

2̂ 0̂ 2̂ 4̂ 6̂ 8̂ 1̂0 0̂ 2̂ 4̂ 6̂ 8̂ 1̂0

3̂ 0̂ 3̂ 6̂ 9̂ 0̂ 3̂ 6̂ 9̂ 0̂ 3̂ 6̂ 9̂

4̂ 0̂ 4̂ 8̂ 0̂ 4̂ 8̂ 0̂ 4̂ 8̂ 0̂ 4̂ 8̂

5̂ 0̂ 5̂ 1̂0 3̂ 8̂ 1̂ 6̂ 1̂1 4̂ 9̂ 2̂ 7̂

6̂ 0̂ 6̂ 0̂ 6̂ 0̂ 6̂ 0̂ 6̂ 0̂ 6̂ 0̂ 6̂

7̂ 0̂ 7̂ 2̂ 9̂ 4̂ 1̂1 6̂ 1̂ 8̂ 3̂ 1̂0 5̂

8̂ 0̂ 8̂ 4̂ 0̂ 8̂ 4̂ 0̂ 8̂ 4̂ 0̂ 8̂ 4̂

9̂ 0̂ 9̂ 6̂ 3̂ 0̂ 9̂ 6̂ 3̂ 0̂ 9̂ 6̂ 3̂

1̂0 0̂ 1̂0 8̂ 6̂ 4̂ 2̂ 0̂ 1̂0 8̂ 6̂ 4̂ 2̂

1̂1 0̂ 1̂1 1̂0 9̂ 8̂ 7̂ 6̂ 5̂ 4̂ 3̂ 2̂ 1̂

Table	6.2.3

For	each	positive	integer n greater	than	or	equal	to 2, we	can	form	a	system	called Zn com-
pletely	analogously	to	the	way	we	formed Z12. We	will	obtain	one	such	system	for	each	integer
2, 3, 4, . . . (We	skip	over	 the	case n = 1, because	that	 turns	out	 to	be	useless.) Let	us	start
with	the	example	of n = 8. Analogously	to	what	we	did	with 12, we	see	that	for n = 8, any
integer	can	be	reduced	by	multiples	of 8 until	what	is	left	is	somewhere	from 0 through 7. In
other	words, for	any	integer, there	is	a	unique	integer	from 0 to 7 that	is	congruent	mod 8 to	the
original	integer. In	symbols, for	any	integer a, there	is	a	unique	integer	from 0 to 7, denoted x,
so	that x ≡ a (mod 8). For	example, if	we	let a = 10, then x = 2, because 2 ≡ 10 (mod 8).
Now	suppose	we	start	with a = 1950. In	this	case, we	could	proceed	by	subtracting 8, and
then	another 8, and	then	again	and	again, as	many	times	as	are	needed, until	we	are	left	with
some	number	from 0 to 7. That	would	work, but	would	be	very	tedious. A better	method	would
be	to	divide 1950 by 8. We	would	then	see	that	the	quotient	is 243, and	the	remainder	is 6;
that	is, we	see	that 1950/8 = 243 + (6/8). It	follows	that 1950 = 243 · 8 + 6, and	hence	that
6 − 1950 = (−243) · 8. We	therefore	see	that 6 ≡ 1950 (mod 8), and	therefore	we	can	use
x = 6. We	note, as	before, that	if	we	start	with	a	number a that	is	already	from 0 to 7, then x

is	just a itself.
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Exercise 6.3.2. For	each	integer a given	below, find	the	integer x from 0 to 7 so	that x ≡ a

(mod 8).

(1) a = 15;

(2) a = 54;

(3) a = 1381;

(4) a = −2;

(5) a = 3;

(6) a = 8.

As	before, the	set Z8 and	will	have 8 members, denoted 0̂, 1̂, 2̂, 3̂, 4̂, 5̂, 6̂ and 7̂. We	add
elements	of Z8 as	before, except	that	this	time	we	reduce	by	multiples	of 8. For	example, in Z8

we	have 2̂ + 3̂ = 5̂ and	we	have 5̂ + 4̂ = 1̂, where	the	latter	holds	because 5 + 4 = 9, and
1 ≡ 9 (mod 8).

Exercise 6.3.3. Calculate	the	following	in Z8.

(1) 4̂ + 1̂;

(2) 3̂ + 7̂;

(3) 0̂ + 3̂.

Just	as	we	did	for (Z12,+), we	can	form	an	addition	table	for (Z8,+), shown	in	Table 6.3.1.
Notice	the	same	diagonal	pattern	as	before.

+ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂

0̂ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂

1̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 0̂

2̂ 2̂ 3̂ 4̂ 5̂ 6̂ 7̂ 0̂ 1̂

3̂ 3̂ 4̂ 5̂ 6̂ 7̂ 0̂ 1̂ 2̂

4̂ 4̂ 5̂ 6̂ 7̂ 0̂ 1̂ 2̂ 3̂

5̂ 5̂ 6̂ 7̂ 0̂ 1̂ 2̂ 3̂ 4̂

6̂ 6̂ 7̂ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂

7̂ 7̂ 0̂ 1̂ 2̂ 3̂ 4̂ 5̂ 6̂

Table	6.3.1
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We	ask	whether (Z8,+) satisfies	the	same	five	properties	as (Z,+), and	the	answer	is	yes.
The	closure, associative	and	identity	properties	hold	for (Z8,+) just	as	they	did	for (Z12,+).
We	observe	that 0̂ is	once	again	the	identity	element. The	inverse	property	also	holds, although	a
little	caution	must	be	taken, because	the	inverses	in Z8 are	not	the	same	as	in Z12. For	example,
the	inverse	of 1̂ in Z8 is 7̂, because 1+7 = 8, and	so 1̂ + 7̂ = 0̂. This	contrasts	with	the	inverse
of 1̂ in Z12, which	is 1̂1. The	commutative	property	also	holds	for (Z8,+).

Exercise 6.3.4. Find	the	inverses	with	respect	to	addition	of 2̂, 4̂, 5̂ and 0̂ in Z8.

Just	as (Z8,+) satisfies	the	five	properties	of	closure, associativity, identity, inverses	and	com-
mutativity, so	does (Zn,+) for	any	positive	integer n, where n ≥ 2. The	system (Zn,+) is
called	the group	of	integers	mod n with	the	operation	addition. Notice	that (Zn,+) has	pre-
cisely n members.

Exercise 6.3.5. Consider	the	system (Z6,+).

(1) List	the	elements	of	this	system.

(2) In (Z6,+), what	are 5̂ + 2̂ and 4̂ + 1̂?

(3) Construct	the	addition	table	for (Z6,+).

(4) Find	the	inverses	with	respect	to	addition	of 2̂, 4̂, 5̂ and 0̂ in Z6.

Exercise 6.3.6. Observe	that	in	the	addition	table	for (Z8,+), shown	in	Table 6.3.1, all	the
entries	on	the	downwards	sloping	diagonal	are	even	numbers. Will	the	same	fact	hold	in
the	addition	table	for	any (Zn,+)? If	yes, explain	why. If	not, describe	what	does	happen
on	the	downwards	sloping	diagonal	for (Zn,+) in	general, and	explain	your	answer.

Having	looked	at (Zn,+), let	us	now	turn	to (Zn, ·). Consider	the	case	of (Z5, ·). The	multi-
plication	table	for (Z5, ·) is	shown	in	Table 6.3.2.
Notice	that	Table 6.3.2 does	not	satisfy	the	simple	pattern	along	upward-sloping	lines	as	in

Tables 6.2.2 and	6.3.1.
It	is	seen	that (Z5, ·) does	satisfy	the	closure, associative, and	identity	properties	(with 1̂ as

identity), and	the	commutative	property	as	well. However, the	inverses	property	is	not	satisfied,
because 0̂ has	no	inverse	with	respect	to	multiplication. To	see	this	fact, we	note	that	an	inverse
for 0̂ would	be	some x̂ in Z5 such	that 0̂ · x̂ = 1 and x̂ · 0̂ = 1. A look	at	the	table	shows	that
no	such x̂ exists. We	can	remedy	this	problem	just	as	we	did	for Q in	Section 6.1, by	dropping
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· 0̂ 1̂ 2̂ 3̂ 4̂

0̂ 0̂ 0̂ 0̂ 0̂ 0̂

1̂ 0̂ 1̂ 2̂ 3̂ 4̂

2̂ 0̂ 2̂ 4̂ 1̂ 3̂

3̂ 0̂ 3̂ 1̂ 4̂ 2̂

4̂ 0̂ 4̂ 3̂ 2̂ 1̂

Table	6.3.2

the	problematic 0̂. Let	us	use	the	symbol Z∗
5 to	denote Z5 with 0̂ removed. We	then	obtain	the

multiplication	table	for (Z∗
5, ·), shown	 in	Table 6.3.3. We	leave	it	to	the	reader	to	verify	that

(Z∗
5, ·) satisfies	all	of	our	properties.

· 1̂ 2̂ 3̂ 4̂

1̂ 1̂ 2̂ 3̂ 4̂

2̂ 2̂ 4̂ 1̂ 3̂

3̂ 3̂ 1̂ 4̂ 2̂

4̂ 4̂ 3̂ 2̂ 1̂

Table	6.3.3

Unfortunately, what	works	for (Z∗
5, ·) does	not	work	for	all (Z∗

n, ·). For	example, we	see	in
Table 6.3.4 the	multiplication	 table	 for Z∗

6. Not	all	five	properties	hold	 for (Z∗
6, ·). First, the

closure	property	does	not	hold; for	example, we	see	that 2̂ · 3̂ = 0̂, but 0̂ is	not	in Z∗
6. The

associative	property	holds, as	does	the	identity	property	(with	identity 1̂), and	the	commutative
property	holds. The	inverses	property	does	not	hold; for	example, it	is	seen	that 2̂ does	not	have
an	inverse	with	respect	to	multiplication.

· 1̂ 2̂ 3̂ 4̂ 5̂

1̂ 1̂ 2̂ 3̂ 4̂ 5̂

2̂ 2̂ 4̂ 0̂ 2̂ 4̂

3̂ 3̂ 0̂ 3̂ 0̂ 3̂

4̂ 4̂ 2̂ 0̂ 4̂ 2̂

5̂ 5̂ 4̂ 3̂ 2̂ 1̂

Table	6.3.4
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BEFORE YOU READ FURTHER:

Is	there	something	about	the	number 5 that	makes (Z∗
5, ·) satisfy	all	our	properties, and

about	the	number 6 that	makes (Z∗
6, ·) fail	to	satisfy	the	closure	and	identity	properties?

In	general, what	 is	 it	about	an	 integer n that	would	determine	whether	or	not (Z∗
n, ·)

satisifies	all	five	properties? (You	will	most	likely	not	be	able	to	demonstrate	your	answer
rigorously, unless	you	know	more	about	numbers	than	we	are	assuming, but	try	to	make
an	educated	guess.)

It	turns	out	that	the	relevant	difference	between 5 and 6 that	leads	to (Z∗
5, ·) satisfying	our	five

properties	but (Z∗
6, ·) not	satisfying	all	five	is	the	issue	of	prime	numbers vs.	composite	numbers.

A positive	integer	is	a prime	number if	its	only	positive	factors	are 1 and	itself. A positive	integer
that	is	not	prime	is	called	composite. For	example, the	numbers 2, 3, 5 and 7 are	prime, whereas
6 is	composite, having	factors 1, 2, 3, and 6. It	turns	out, though	this	is	far	from	obvious, that
(Z∗

n, ·) satisfies	all	five	properties	if	and	only	if n is	a	prime	number. The	proof	uses	facts	about
prime	numbers.

Exercise 6.3.7. Construct	the	multiplication	table	for (Z8, ·).

6.4 Groups

In	the	previous	sections	of	this	chapter, we	saw	a	number	of	mathematical	systems	that	satisfied
the	same	properties	of	closure, associativity, identity	and	inverses. (All	the	systems	discussed	up
till	now	also	satisfied	the	commutativity	property, but	we	will	see	systems	that	do	not	satisfy	this
property	in	a	little	while.) Mathematicians	have	in	fact	found	so	many	systems	that	satisfy	these
same	four	fundamental	properties	(though	not	necessarily	commutativity), that	they	decided	to
give	all	such	systems	a	name	so	that	they	could	be	studied	together, and	common	properties
could	be	found. We	will	call	any	system	satisfying	these	four	properties	a	group.
Let	us	phrase	this	concept	more	precisely. First	of	all, a	group	is	a	set	of	objects, which	may

be	numbers	(as	in	the	case	of	the	integers), but	which	could	be	other	things	as	well. Suppose
that G is	a	set	of	objects. The	members	of G will	be	referred	to	as elements of G. Next, this
set	of	objects G needs	a binary	operation, which	combines	elements	of G by	taking	any	two
elements	of G as	inputs, and	for	these	inputs	gives	a	unique	output. Now, suppose	that ∗ is	a
binary	operation. That	means	that	for	any	two	elements g and h inG, we	can	combine	them	to
get	a	single	thing	denoted g ∗ h. The	notation g ∗ h is	meant	to	be	similar	to	the	notations	for
addition	and	multiplication, our	two	most	familiar	binary	operations. We	will	denote	a	set G
together	with	an	operation ∗ by	the	pair (G, ∗). One	example	of	such	a	pair (G, ∗) is	the	pair
(Z,+). A pair (G, ∗) is	called	a group if	it	satisfies	the	above	mentioned	four	properties, which
we	now	state	in	their	most	general	form:
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Closure	property: If g and h are	in G, then g ∗ h is	in G.

Associative	property: If g, h and k are	in G, then (g ∗ h) ∗ k = g ∗ (h ∗ k).
Identity	property: There	is	a	distinguished	element	inG, called	an identity	element and	denoted
e, so	that	if g is	in G, then e ∗ g = g and g ∗ e = g.

Inverses	property: If g is	 in G, there	 is	an	element g ′ in G, called	an inverse of g, so	 that
g ∗ g ′ = e and g ′ ∗ g = e.

Some, though	not	all, groups	also	satisfy	the	following	property:

Commutative	property: If g and h are	in G, then g ∗ h = h ∗ g.
A group	that	also	satisfies	the	commutative	property	is	called	an abelian group. (It	would	be

entirely	reasonable	to	call	such	a	group	a	“commutative	group;” however, that	is	not	standard
terminology. The	term	abelian	group	is	in	honor	of	the	Norwegian	mathematician	Niels	Abel.
This	choice	of	name	has	given	rise	to	the	following	well	known	joke	(well	known	among	math-
ematicians, at	least). Question: what	is	purple	and	commutative? Answer: an	abelian	grape.)

If	we	go	back	and	consider	the	examples	we	have	seen	so	far, now	using	the	terminology	of
groups, we	see	that (Z,+) is	an	abelian	group, as	is (Zn,+) for	each	positive	integer n, where
n ≥ 2. On	the	other	hand, the	system (Z, ·) is	not	a	group, because	we	saw	that	it	did	not	satisfy
the	inverses	property. We	also	saw	that (Z∗

n, ·) is	a	group	precisely	if n is	a	prime	number.

Exercise 6.4.1. Which	of	the	following	systems	is	a	group? Which	is	an	abelian	group?

(1) The	even	integers	with	addition.

(2) The	odd	integers	with	addition.

(3) All	real	numbers	with	addition.

(4) All	real	numbers	with	multiplication.

There	is	one	matter	we	need	to	clarify	right	away	about	the	definition	of	groups. In	the	state-
ment	of	the	identity	property, we	mentioned	“an	identity	element,” and	in	the	statement	of	the
inverses	property, we	mentioned	“an	inverse.” Could	it	be	the	case	that	a	group	has	more	than
one	identity	element, or	that	an	element	in	a	group	has	more	than	one	inverse? Intuitively	that
sounds	unlikely, and	the	following	proposition	shows	that	our	intuition	is	correct.

Proposition 6.4.1. Suppose	that (G, ∗) is	a	group.

1. The	group G has	a	unique	identity	element.

2. If g is	an	element	of G, then g has	a	unique	inverse.

Demonstration. We	show	Part (1), leaving	Part (2)	to	the	reader	in	Exercise 6.4.2.
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(1). We	follow	the	standard	mathematical	approach	 to	showing	 that	something	 is	unique,
which	is	to	suppose	that	there	are	two	of	the	thing, and	then	show	that	the	two	things	are	in	fact
equal. In	particular, suppose	that e and c are	both	identity	elements	of G. Then

e = e ∗ c = c,

where	in	the	first	equality	we	are	thinking	of c as	an	identity	element, and	in	the	second	equality
we	are	thinking	of e as	an	identity	element. It	follows	that e = c, and	therefore	the	identity
element	of (G, ∗) is	unique.

By	the	above	proposition, we	can	now	refer	to	“the	identity	element”	of	a	group, and	“the
inverse”	of	each	element	of	the	group.

Exercise 6.4.2. [Used	in	This	Section] Demonstrate	Proposition 6.4.1 (2).

Groups	come	in	two	basic	varieties, infinite or	finite, depending	on	how	many	elements	are	in
the	group. For	example, the	group (Z,+) is	an	infinite	group, and	each (Zn,+) is	a	finite	group.
Although	the	infinite	groups	we	have	dealt	with	so	far	may	seem	more	natural	(for	example, the
integers), finite	groups	are	often	easier	to	work	with	mathematically. Let	us	look	at	some	further
examples	of	finite	groups.
Recall	 that	 the	group (Zn,+) has	precisely n elements	 in	 it. Because	 this	works	 for	each

positive	integer n with n ≥ 2, we	see	that	there	is	a	group	of	each	possible	finite	size. (There	is
also	a	group	with	one	element, namely	the	set	with	the	single	element 0, and	with	the	operation
addition.) However, there	are	many	other	finite	groups	besides	the	groups (Zn,+), though	many
of	them	are	more	complicated	to	construct. Some	of	the	following	examples	of	finite	groups
may	appear	somewhat	arbitrary. Where	did	these	groups	come	from? Sometimes	trial	and	error
was	used, though	if	that	were	the	only	method, not	only	would	that	be	rather	tedious, but	it
would	be	rather	unappealing. There	are	various	systematic	ways	of	constructing	finite	groups,
some	of	which	are	extremely	complex, yielding	huge	groups	with	nicknames	such	as	“monster”
(seriously).
To	 see	 some	examples	of	finite	groups, recall	 that	a	group	 in	general	 is	 a	 set	of	 elements

G, together	with	an	operation ∗, subject	 to	 four	properties. When	dealing	with	 the	 familiar
operations	of	addition	and	multiplication, all	we	had	to	do	was	name	these	operations, and
everyone	knew	exactly	what	we	were	talking	about. In	unfamiliar	situation, when	we	cannot
refer	to	an	operation	by	simply	giving	a	name	with	which	everyone	would	be	familiar, we	will
return	to	the	idea	of	the	multiplication	table	mentioned	previously. To	describe	a	group, we	will
first	describe	a	setG, and	then	describe	an	operation ∗ using	a	“multiplication”	table, which	we
will	call	an operation	table from	now	on.We	use	operation	tables	just	as	we	used	addition	tables
for (Z,+) and (Z,+) previously. What	will	be	new	now	is	that	instead	of	using	an	operation
table	to	give	a	pictorial representation of	a	binary	operation	with	which	we	are	already	familiar,
now	we	will define new	binary	operations	by	giving	operation	 tables	 for	 them. If	we	define



6.4	Groups 231

define	a	binary	operation ∗ by	giving	its	operation	table, then	to	find a ∗ b, we	simply	look	at
the	entry	in	the	operation	table	in	the	row	containing a and	the	column	containing b.
Let	us	construct	a	two-element	group	via	an	operation	table. We	start	with	a	set, labeled T ,

which	contains	two	elements, called r and s; we	can	abbreviate	this	by	writing T = {r, s}. We
then	specify	a	binary	operation ∗ by	giving	Table 6.4.1.

∗ r s

r r s

s s r

Table	6.4.1

From	Table 6.4.1 we	see, for	example, that r ∗ s = s and s ∗ s = r. We	want	 to	verify
whether (T, ∗) is	a	group. Now, we	do	not	know	whether r and s are	meant	to	denote	numbers,
or	perhaps	houses, or	something	else; we	also	do	not	know	that ∗ “means,” in	the	way	that	we
know	what	addition	and	multiplication	of	numbers	means. So, is	it	possible	to	verify	whether
(T, ∗) is	a	group	using	only	the	operation	table	given	for ∗? The	answer	is	yes—everything	that
can	be	known	about ∗ is	contained	in	its	operation	table.
The	closure	property	certainly	holds	for (T, ∗), because	any	two	elements	in	the	set T yield	an

element	of T when	combined	by ∗; this	fact	is	evident	because	all	the	entries	in	Table 6.4.1 are
themselves	in T . In	general, as	long	as	all	entries	in	an	operation	table	are	themselves	elements
of	the	original	set, then	the	closure	property	will	necessarily	hold.
To	check	the	associativity	of ∗ we	need	to	check	many	cases. In	principle, one	would	have

to	check	every	possible	way	to	combine	 three	elements	of T (repeats	allowed), to	see	 if	 the
associativity	rule	holds. For	example, does (r ∗ s) ∗ s equal r ∗ (s ∗ s)? Using	the	operation
table, we	see	that (r ∗ s) ∗ s = s ∗ s = r, and r ∗ (s ∗ s) = r ∗ r = r, which	is	what	we
had	hoped	for. To	check	whether	associativity	holds	for (T, ∗), we	have	to	do	all	other	possible
cases, which	would	be	quite	tedious. A case	by	case	check	does	show	that	associativity	holds	in
this	example; we	will	not	go	through	the	details. Because	checking	for	associativity	is	so	tedious
(and	not	very	enlightening), the	reader	can	assume	the	associative	property	for	any	operation
tables	we	use	from	now	on	(not	every	possible	operation	table	satisfies	the	associative	property,
but	we	are	not	interested	in	those	that	do	not).
We	definitely	cannot	assume	the	two	other	properties	of	groups, however, and	so	we	need	to

verify	whether	the	identity	and	inverses	properties	hold	for (T, ∗). To	verify	whether	the	identity
property	holds, we	need	to	find	an	element	of T that	is	an	identity	element	with	respect	to ∗.
That	is, we	want	to	find	an	element	of T that	behaves	with	respect	to ∗ just	as	the	number 0
behaves	with	respect	to	addition	of	numbers. Looking	at	the	table, we	see	that r is	precisely
such	an	element, because r ∗ r = r, and r ∗ s = s and s ∗ r = s. Hence, the	identity	property
holds	with	identity	element r.
To	verify	the	inverses	property, we	have	to	find	an	inverse	for	each	element	of T , where	an

inverse	of	an	element	is	something	that	cancels	it	out, which	means	that	the	element	and	its
inverse	combine	to	yield	the	identity	element. (Of	course, if	a	set	and	binary	operation	do	not
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have	an	identity	element, the	question	of	inverses	is	moot.) By	looking	at	the	table, we	see	that
r ∗ r = r and s ∗ s = r. In	other	words, the	elements r and s are	each	their	own	inverses.
It	may	seem	somewhat	strange	that	something	is	its	own	inverse, that	is, it	cancels	itself	out,
but	there	is	nothing	invalid	here. Consequently, the	inverses	property	holds	for (T, ∗). Putting
this	all	together, we	see	that (T, ∗) is	a	group. Does	the	commutative	property	hold? Note	that
r ∗ s = s and s ∗ r = s, and	so r ∗ s = s ∗ r. Because	this	is	the	only	possible	pair	of	elements
to	check	for	commutativity, and	it	works, we	see	that (T, ∗) satisfies	the	commutative	property,
and	hence	is	an	abelian	group.
That	was	a	fair	bit	of	effort	to	verify	that (T, ∗) was	a	group, but	if	we	want	to	be	sure	that ∗

as	given	in	Table 6.4.1 yields	a	group, we	cannot	avoid	that	effort, because	not	every	operation
table	yields	a	group. In	fact, if	you	randomly	write	down	an	operation	table, it	is	highly	unlikely
that	it	will	yield	a	group. As	an	example, let	us	take	the	same	set T = {r, s} as	before, but	let	us
define	a	different	binary	operation, denoted • this	time, given	by	Table 6.4.2.

• r s

r r s

s s s

Table	6.4.2

We	want	to	verify	whether	or	not (T, •) is	a	group. The	reader	may	verify	that (T, •) once
again	satisfies	the	closure, associativity	and	identity	properties, with r again	playing	the	role	of
the	identity. But	what	about	inverses? From	the	table	we	see	that r•r = r, so r is	its	own	inverse.
On	the	other	hand, looking	at	the	table	does	not	yield	an	inverse	for s. We	see	that r • s = s

and s • s = s, so	neither r nor s can	be	the	inverse	of s. It	follows	that (T, •) does	not	satisfy
the	inverses	property, and	is	therefore	not	a	group. So, not	all	operation	tables	work.
Let	us	try	a	few	more	operation	tables. Consider	the	setV = {x, y, z,w}with	binary	operation

⊕ given	by	Table 6.4.3.

⊕ x y z w

x w z y x

y z w x y

z y x w z

w x y z w

Table	6.4.3

Is (V,⊕) a	group? Because	all	the	entries	in	the	table	are	in	the	set V , the	closure	property
holds. As	mentioned, we	can	assume	 the	associativity	property. As	 for	 the	 identity	property,
notice	that w plays	the	role	of	an	identity	element, because w combined	with	anything	is	that
same	thing. Observe	that	the	column	underw in	the	operation	table	is	the	same	as	the	column
at	the	left	end	of	the	table; similarly, the	row	to	the	right	of w is	the	same	as	the	row	at	the
top	of	the	table. This	phenomenon	holds	precisely	because w is	the	identity	element, and	this
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method	can	be	used	to	find	identity	elements	(if	they	exist)	quickly	in	any	operation	table. For
inverses, it	is	seen	that	each	element	is	its	own	inverse	(this	will	not	be	the	case	for	all	finite
groups, so	don’t	jump	to	any	conclusions	here). Hence, all	the	properties	of	a	group	hold, and
(V,⊕) is	indeed	a	group. It	is	also	the	case	that	the	commutative	property	holds	for (V,⊕), To
see	this, you	could	try	all	possibilities. For	example, we	see	that x ⊕ y = z and y ⊕ x = z,
so	that x ⊕ y = y ⊕ x; similarly	for	the	other	cases. Hence (V,⊕) is	an	abelian	group. There
is	an	easier	way	to	see	that	commutativity	holds	for (V,⊕). Notice	that	the	operation	table	for
(V,⊕) is	symmetric	about	its	downward	sloping	diagonal. If	you	think	about	it, you	will	see
that	in	general, for	any	group, this	type	of	symmetry	of	the	operation	table	will	hold	precisely	if
a	group	satisfies	the	commutative	property.

Exercise 6.4.3. For	each	collection	of	objects	and	operation	table	indicated	below, answer
the	following	question:

(a) Is	the	closure	property	satisfied?

(b) Is	there	an	identity	element? If	so, what	is	it?

(c) Which	elements	have	inverses? For	those	that	have	inverses, state	their	inverses? (If
there	is	no	identity	element, this	question	is	moot.)

(d) Is	the	commutative	property	satisfied?

(e) Assuming	that	the	associative	property	holds, do	the	collection	of	objects	and	given
operation	form	a	group? If	they	are	a	group, is	it	an	abelian	group?

(1) The	set V = {x, y, z,w} with	binary	operation ⋄ given	by	Table 6.4.4.

(2) The	set K = {m,n, p, q, r} with	binary	operation ⋆ given	by	Table 6.4.5.

(3) The	set M = {1, s, t, a, b, c} with	binary	operation ⊙ given	by	Table 6.4.6.

(4) The	set W = {e, f, g, h,w, x, y, z} with	binary	operation ∗ given	by	Table 6.4.7.

⋄ x y z w

x z w y x

y x y z w

z y z w x

w z w x z

Table	6.4.4

We	have	seen	some	examples	of	finite	groups	given	by	operation	tables, and	other	examples
(namely	the	groups (Zn,+))	that	were	not	given	by	operation	tables. However, any	finite	group
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⋆ m n p q r

m n p q m r

n p r m n p

p q m r p n

q m n p q r

r r p n r q

Table	6.4.5

⊙ 1 s t a b c

1 1 s t a b c

s s t 1 b c a

t t 1 s c a b

a a c b 1 t s

b b a c s 1 t

c c b a t s 1

Table	6.4.6

has	an	operation	table, even	if	that	is	not	how	the	group	was	initially	described; no	matter	how
a	binary	operation	is	defined, we	can	always	write	out	an	operation	table	simply	by	seeing	what
the	binary	operation	does	to	each	pair	of	elements	of	the	group.

BEFORE YOU READ FURTHER:

Look	at	the	examples	of	operation	tables	that	we	have	seen	so	far	that	yield	groups. Can
you	see	any	nice	features	of	the	way	that	the	elements	are	arranged	in	these	tables?

The	following	proposition	states	a	very	nice	feature	of	operation	tables	of	finite	groups.

Proposition 6.4.2. Suppose	that (G, ∗) is	a	finite	group. In	the	operation	table	for	the	group,
each	element	of	the	group	appears	exactly	once	in	each	row, and	once	in	each	column.

Demonstration. Suppose	to	the	contrary	that	a	single	element	ofG appears	twice	in	one	row. In
particular, suppose	that	this	same	element	appears	twice	in	the	row	corresponding	to	the	element
a; suppose	that	it	appears	in	the	columns	corresponding	to	elements b and c. It	follows	that
a∗b = a∗c. Because (G, ∗) is	a	group, we	know	that a has	an	inverse, say a ′. We	deduce	that
a ′ ∗ (a ∗b) = a ′ ∗ (a ∗ c), and	hence	by	associativity	we	see	that (a ′ ∗a) ∗b = (a ′ ∗a) ∗ c.
If e is	the	identity	element	of	the	group, then	it	follows	the	meaning	of	inverse	elements	that
e ∗ b = e ∗ c. By	 the	meaning	of	 the	 identity	element, we	deduce	 that b = c. However,
we	assumed	that	the	columns	corresponding	to b and c are	distinct	columns, and	so	we	have
arrived	at	a	 logical	 impossibility. The	only	way	out	of	 this	situation	is	 to	conclude	that	each
element	of G appears	at	most	once	in	each	row. In	order	to	fill	up	each	row	in	the	operation



6.4	Groups 235

∗ e f g h w x y z

e e f g h w x y z

f f g h e x y z w

g g h e f y z w x

h h e f g z w x y

w w x y z e f g h

x x y z w f g h e

y y z w x g h e f

z z w x y h e f g

Table	6.4.7

table	with	elements	of G, it	must	be	the	case	that	every	element	of G appears	at	least	once	in
each	row. The	final	conclusion	is	that	each	element	ofG appears	exactly	once	in	each	row. The
same	idea	will	work	for	columns	instead	of	rows, and	we	will	skip	the	details.

We	note	that	even	though	each	element	of	the	group	appears	exactly	once	in	each	row, and
once	 in	 each	 column, of	 its	 operation	 table, it	 is	 definitely	 not	 the	 case	 that	 any	operation
table	that	satisfies	this	property	yields	a	group. The	reader	is	asked	to	furnish	an	example	in
Exercise 6.4.4.

Exercise 6.4.4. [Used	in	This	Section] Find	an	example	of	a	finite	set	with	a	binary	operation
given	by	an	operation	table, such	that	each	element	of	the	set	appears	exactly	once	in	each
row, and	once	in	each	column, and	yet	the	set	with	this	binary	operation	is	not	a	group.

Exercise 6.4.5. Let C be	the	set C = {k, l,m}. Construct	an	operation	on C, by	making
an	operation	table, which	turns C into	a	group.

What	does	it	mean	to	say	that	two	groups	are	different? Certainly, the	group (T, ∗) given	by
Table 6.4.1 is	different	from	the	group (V,⊕) given	by	Table 6.4.3, because	the	former	has	two
elements	(namely r and s), whereas	the	latter	has	four	elements	(namely x, y, z and w).
Now	consider	the	set Q = {E, F,G,H} with	binary	operation ⊞ given	byTable 6.4.8.
The	reader	can	verify	that (Q,⊞) is	indeed	an	abelian	group. We	now	compare	the	groups

(V,⊕) and (Q,⊞). Technically	they	are	distinct	groups, having	different	elements	and	operation
tables, but	intuitively	they	appear	to	be	“essentially	the	same.” More	precisely, observe	that	we
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⊞ F G H E

F E H G F

G H E F G

H G F E H

E F G H E

Table	6.4.8

can	obtain	Table 6.4.8 from	Table 6.4.3 by	the	following	substitutions:

x 7−→ F

y 7−→ G

z 7−→ H

w 7−→ E.

The	fact	that	Table 6.4.8 is	obtained	from	Table 6.4.3 by	this	substitution	means	that	not	only
do	the	elements	of V correspond	to	the	elements	ofQ, but	the	operation ⊕ corresponds	to	the
operation⊞. Hence, we	say	that (V,⊕) and (Q,⊞) are	essentially	the	same	in	that	the	second
group	is	obtained	from	the	first	simply	by	renaming	the	elements	of	first	group	and	renaming
the	binary	operation. We	note, moreover, that	 it	 is	acceptable	 for	one	operation	 table	 to	be
obtained	from	another	by	substitution, even	if	one	table	has	to	be	rearranged. For	example, if
⊞ had	initially	been	given	by	Table 6.4.9, that	too	would	be	essentially	the	same	as ⊕. If	one
group	can	be	obtained	from	another	by	renaming	the	elements	and	the	binary	operation, and
possibly	rearranging	the	operation	table, then	we	say	the	two	groups	are isomorphic.

⊞ E F G H

E E F G H

F F E H G

G G H E F

H H G F E

Table	6.4.9

Clearly, two	groups	with	different	numbers	of	elements	cannot	be	isomorphic. On	the	other
hand, not	 all	 groups	 of	 the	 same	 size	 are	 isomorphic. For	 example, consider	 the	 set Z =
{a, b, c, d} with	binary	operation ⋆ given	by	Table 6.4.10.
Again, the	reader	can	verify	that (Z, ⋆) is	an	abelian	group. However, we	claim	that (Z, ⋆)

is	not	 isomorphic	 to (Q,⊞) (and	hence	not	 to (V,⊕) either). The	most	direct	way	 to	show
that (Q,⊞) and (Z, ⋆) are	not	isomorphic	would	be	to	try	every	possible	way	of	renaming	the
elements	ofQ as a, b, c and d, and	then	observing	that	we	never	obtain	Table 6.4.10 for ⋆ from
Table 6.4.8 for ⊞, even	after	rearranging. Such	a	verification	would	be	quite	tedious. The	more
appealing	way	to	verify	that	two	groups	are	not	isomorphic	is	to	find	some	property	of	one	of
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⋆ a b c d

a a b c d

b b c d a

c c d a b

d d a b c

Table	6.4.10

the	groups	that	does	not	hold	for	the	other	group, but	such	that	the	property	would	be	preserved
by	renaming	and	rearranging	an	operation	table. For	example, we	observe	that	in	Table 6.4.10,
which	has	identity	element a, each	of a and c is	its	own	inverses, but b and d are	not	their
own	inverses	(they	are	inverses	of	each	other). By	contrast, in	Table 6.4.8, which	has	identity
element E, we	observe	that	each	of F, G, H and E is	its	own	inverses. Hence, in (Z, ⋆) two
elements	are	their	own	inverses, whereas	in (Q,⊞) all	four	elements	are	their	own	inverses. It
follows	that	these	two	groups	could	not	possibly	be	isomorphic.

Exercise 6.4.6. Is	the	group (Z4,+) isomorphic	to	either	of (Z, ⋆) or (Q,⊞)? If (Z4,+)
is	isomorphic	to	one	of	these	two	groups, demonstrate	this	fact	by	showing	how	to	rename
the	elements	of (Z4,+) appropriately.

6.5 Subgroups

One	interesting	phenomenon	in	the	theory	of	groups	is	the	idea	of	a	subgroup. Consider	the
group (Z,+). Inside	the	set	of	integers Z is	the	set	of	even	integers

E = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .}.

The	system (E,+), is	itself	a	group. (You	were	asked	to	verify	this	fact	in	Exercise 6.4.1 (1); the
point	is	that	adding	two	even	numbers	gives	an	even	number, so	the	closure	property	holds,
and	the	other	properties	can	be	verified	similarly.) Hence, we	see	that (E,+) is	both	a	group
in	its	own	right, and	it	 is	also	contained	in	the	larger	group (Z,+). We	say	that (E,+) is	a
subgroup	of (Z,+). In	general, a	collection	of	elements	of	a	group	 form	a subgroup if	 this
collection, together	with	the	operation	of	the	original	group, form	a	group	in	their	own	right.
Not	every	collection	of	elements	of	a	groups	forms	a	subgroup. For	example, consider	the	set	of
odd	numbers, denoted O. It	turns	out	that (O,+) is	not	a	group, because	the	closure	property
does	not	hold; to	see	this, note	that	the	sum	of	two	odd	numbers	is	an	even	number, not	an	odd
number.
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Exercise 6.5.1.

(1) Let T be	the	set	of	all	integer	multiples	of 3, that	is, the	set

T = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}.

Is (T,+) subgroup	of (Z,+)?

(2) Let V be	the	set	of	all	perfect	square	integers	and	their	negatives, that	is, the	set

V = {. . . ,−16,−9,−4,−1, 0, 1, 4, 9, 16 . . .}.

Is (V,+) subgroup	of (Z,+)?

It	 turns	out	 that	a	group	may	have	many	subgroups, or	 it	may	have	very	 few. Every	group
contains	what	is	called	the trivial	subgroup, which	is	the	subgroup	consisting	of	nothing	but	the
identity	element. This	trivial	subgroup	has	only	one	element	in	it, which	may	make	it	seem	less
than	exciting, but	it	is	really	a	valid	group. For	example, the	trivial	subgroup	of (Z,+) is	just
the	one	element	set {0}, together	with	the	operation	of	addition. Note	that 0 + 0 = 0, so	the
closure	property	holds	for	this	trivial	group; the	other	properties	of	groups	can	also	be	verified
for {0}. Every	group	also	contains	at	least	one	other	subgroup, namely	itself. We	did	not	require
that	a	subgroup	have	fewer	elements	 than	the	original	group. Of	course, what	we	are	really
interested	in	are	subgroups	that	are	not	the	entire	original	group. A subgroup	that	is	not	equal
to	the	original	group	is	called	a proper	subgroup. The	question	now	becomes	whether	there	are
any	proper, non-trivial	subgroups	in	a	given	group.
Let	us	start	with	the	example	of (Z8,+), the	operation	table	for	which	is	given	in	Table 6.3.1.

We	want	to	find	a	subcollection	of	elements	of (Z8,+) that	form	a	group	by	themselves. Be-
cause	 the	operation + is	associative	 for	all	 the	elements	of Z8, it	 is	certainly	associative	 for
any	subcollection	of	elements. As	a	result, we	will	not	have	to	worry	about	associativity	when
looking	for	subgroups	of (Z8,+), or	subgroups	of	anything	else	for	that	matter. On	the	other
hand, we	do	have	to	worry	about	closure, identity	and	inverses. Because	the	subcollections	of
(Z8,+) that	we	are	looking	for	must	satisfy	the	identity	property, they	must	contain 0̂. So, we
need	to	find	a	subcollection	of Z8 = {0̂, 1̂, 2̂, 3̂, 4̂, 5̂, 6̂, 7̂} that	contains 0̂, and	that	satisfies	the
closure	property, and	such	that	for	any	element	of	the	subcollection, its	inverse	will	be	in	the
subcollection. A good	way	to	try	to	find	such	a	subcollection	is	to	choose	some	elements, and
construct	the	operation	table.
Let	us	try	the	subcollection A = {0̂, 1̂, 3̂, 7̂} of Z8, chosen	randomly. The	operation	table	for

these	elements, shown	in	Table 6.5.1, was	obtained	by	deleting	all	the	unnecessary	rows	and
columns	of	the	operation	table	for (Z8,+).
An	inspection	of	the	operation	table	for A reveals	that (A,+) is	not	a	subgroup	of (Z8,+).

First, it	does	not	satisfy	the	closure	property, because, for	example, we	see	that 1̂ + 3̂ = 4̂, and
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+ 0̂ 1̂ 3̂ 7̂

0̂ 0̂ 1̂ 3̂ 7̂

1̂ 1̂ 2̂ 4̂ 0̂

3̂ 3̂ 4̂ 6̂ 2̂

7̂ 7̂ 0̂ 2̂ 6̂

Table	6.5.1

yet 4̂ is	not	in	the	subcollection A. In	general, if	all	the	entries	in	the	operation	table	for	the
subcollection	are	themselves	in	the	subcollection, then	the	closure	property	holds; conversely,
if	some	of	the	entries	in	the	operation	table	for	the	subcollection	are	not	in	the	subcollection,
then	the	closure	property	does	not	hold. Further, note	that 3̂ does	not	have	an	inverse	in A,
because	there	is	nothing	in A which, when	added	to 3̂, yields 0̂. (The	element 3̂ does	have	an
inverse	in (Z8,+), namely 5̂, but 5̂ is	not	in A.) So, if	we	want	to	find	subgroups, we	need	to
choose	our	subcollections	more	carefully.
Let	us	now	try	the	subcollection B = {0̂, 2̂, 4̂, 6̂}. The	operation	table	for (B,+) is	shown	in

Table 6.5.2.

+ 0̂ 2̂ 4̂ 6̂

0̂ 0̂ 2̂ 4̂ 6̂

2̂ 2̂ 4̂ 6̂ 0̂

4̂ 4̂ 6̂ 0̂ 2̂

6̂ 6̂ 0̂ 2̂ 4̂

Table	6.5.2

This	time	things	look	more	promising. Notice	that	all	the	elements	of	the	table	are	from	the
subcollection B, so	that	the	closure	property	holds. The	element 0̂ is	in	the	collection, so	the
identity	property	holds. As	for	inverses, note	that 0̂ is	its	own	inverse, that 4̂ is	its	own	inverse,
and	that 2̂+ 6̂ = 0̂ and 6̂+ 2̂ = 0̂, so	that 2̂ and 6̂ are	inverses	of	each	other. Hence	the	inverses
property	holds. Because	the	associativity	property	is	automatic, as	mentioned	above, we	see
that (B,+) is	indeed	a	subgroup.
Are	there	any	other	proper	subgroups	of (Z8,+)? Two	that	are	easy	to	find	are C = {0̂} (the

trivial	subgroup)	and D = {0̂, 4̂}. It	is	not	hard	to	verify	that C and D are	indeed	subgroups
by	examining	their	operation	tables. Are	there	any	other	subgroups? We	could	examine	each
possible	subcollection	of Z8 as	we	did	subcollection A above, but	that	would	be	very	tedious.
In	general, it	is	not	easy	to	find	all	subgroups	of	a	given	group, but	there	is	one	fact	that	is

very	useful	in	reducing	the	work	in	checking	the	various	subcollections. This	result, known	as
Lagrange’s	Theorem, is	as	follows. A proof	of	this	theorem	is	beyond	the	scope	of	this	text.

Proposition 6.5.1 (LaGrange’s	Theorem). Suppose	that (G, ∗) is	a	finite	group. Suppose	that H
is	a	subgroup	of G. Then	the	number	of	elements	in H divides	the	number	of	elements	in G.
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In	other	words, if	you	have	a	finite	group	and	you	are	looking	for	subgroups, you	can	rule
out	any	subcollection	where	the	number	of	elements	does	not	divide	the	number	of	elements
of	the	original	group. However, just	because	a	subcolletion	does	have	an	acceptable	number	of
elements	does	not	mean	that	the	subcollection	is	necessarily	a	subgroup.
Let	us	apply	Lagrange’s	Theorem	to	the	group (Z8,+). This	group	has 8 elements. The	only

numbers	that	divide 8 are 1, 2, 4 and 8. We	can	ignore 1 and 8, because	the	only	subgroup	with
one	element	is	the	trivial	subgroup {0̂}, and	the	only	subgroup	with 8 elements	is	the	whole	of
(Z8,+). Hence, by	Lagrange’s	Theorem, all	the	proper, non-trivial	subgroups	of (Z8,+) must
have 2 or 4 elements. In	particular, there	can	be	no	subgroups	of (Z8,+) with	either 3, 5, 6 or
7 elements. On	the	other	hand, not	every	subcollection	of (Z8,+) with 2 or 4 elements	is	a
subgroup. For	example, the	subcollection A discussed	above	had 4 elements, and	yet	was	not
a	subgroup. In	fact, it	turns	out	that	there	are	no	other	subgroups	of (Z8,+) other	than B, C
andD given	above	(we	omit	the	details, though	it	could	be	verified	directly, albeit	tediously, by
checking	all	subcollections	of Z8 with	either 2 or 4 elements).
Next, let	us	find	all	subgroups	of	the	group (Z7,+). This	group	has 7 elements. By	Lagrange’s

Theorem	any	subgroup	would	have	 to	have	a	number	of	elements	 that	divides 7. But 7 is	a
prime	number; that	is, there	are	no	numbers	that	divide 7 except	itself	and 1. A subgroup	with
7 elements	would	just	be	the	whole	group (Z7,+), and	a	subgroup	with 1 element	would	have
to	be	the	trivial	subgroup. In	other	words, we	see	from	Lagrange’s	Theorem	that (Z7,+) has	no
proper, non-trivial	subgroup. This	same	reasoning	applies	to	any	finite	group	that	has	a	prime
number	of	elements.

Exercise 6.5.2. The	group (Z36,+) has 36 elements. How	many	elements	could	a	subgroup
of (Z36,+) possibly	have?

Exercise 6.5.3. Which, if	 any, of	 the	 following	 subcollections	 of Z6 are	 subgroups	 of
(Z6,+)? Use	Lagrange’s	Theorem, and	construct	operation	tables	as	we	did	for	subgroups
of (Z8,+).

(1) A = {0̂, 3̂};

(2) B = {0̂, 2̂};

(3) C = {0̂, 1̂, 4̂};

(4) D = {0̂, 2̂, 4̂}.

(5) E = {0̂, 1̂, 2̂, 3̂}.
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Exercise 6.5.4. Let (M,⊙) be	as	 in	Exercise 6.4.3 (3). Which, if	any, of	 the	 following
subcollections	of M are	subgroups	of (M,⊙)?

(1) E = {1, s};

(2) F = {1, a};

(3) C = {1, s, t};

(4) D = {1, a, b, c}.

Exercise 6.5.5. Find	as	many	proper	subgroups	as	you	can	of (Z12,+). The	operation	table
for (Z12,+) is	given	in	Table 6.2.2.

6.6 Symmetry	and	Groups

Although	the	study	of	symmetry	appears	to	be	“geometric”	in	nature, and	the	study	of	groups
appears	to	be	“algebraic,” in	fact	some	of	the	same	ideas	appear	in	both	fields. For	example,
recall	Leonardo’s	Theorem	(Proposition 5.4.5)	about	rosette	patterns, which	stated	that	the	sym-
metry	group	of	a	rosette	pattern	is	eitherCn for	some	positive	integer n, orDn for	some	positive
integer n. The Cn groups	should	look	very	familiar	after	our	discussion	of	the	integers	mod n

in	Section 6.3. For	example, we	saw	 in	Table 5.4.1 the	operation	table	for (C8, ·). Compare
that	operation	table	with	the	operation	table	for (Z8,+), shown	in	Table 6.3.1. It	is	seen	from
these	two	operation	tables	that (C8, ·) and (Z8,+) are	isomorphic	groups; simply	replace 1
by 0̂, replace r by 1̂, replace r2 by 2̂, replace r3 by 3̂, etc. The	same	idea	shows	that	for	each
positive	integer n, the	group (Cn, ·) is	isomorphic	to	the	group (Zn,+). We	therefore	see	that
the	same	basic	object	can	arise	in	the	study	of	geometry	and	the	study	of	algebra. Geometry
and	algebra	are, we	see, not	as	unrelated	as	one	might	think	after	seeing	the	two	fields	studied
rather	separately	in	typical	high	school	courses.
To	understand	 the	 relation	between	symmetry	and	algebra	more	explicitly, recall	 the	 term

“symmetry	group” that	we	started	using	in	Section 5.1, though	at	the	time	we	simply	used	this
term	to	refer	to	the	collection	of	all	symmetries	of	a	given	object. Now	that	we	have	discussed	the
general	concept	of	groups	(which	is	inherently	an	algebraic	concept), we	need	to	ask	whether
a	“symmetry	group”	as	previously	defined	is	indeed	a	group	as	we	have	now	defined	it. The
answer, not	surprisingly	given	our	choice	of	terminology, is	yes.

Proposition 6.6.1. Suppose	that K is	a	planar	object. LetG denote	the	collection	of	all	symme-
tries	of K. Then (G, ◦) is	a	group.
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Demonstration. The	closure	properties	follows	from	Proposition 5.1.2 (1). The	associative	prop-
erty	follows	from	Proposition 4.4.2 (2). The	identity	of (G, ◦) is	the	identity	symmetry I. The
inverses	properties	follows	from	Proposition 5.1.2 (2).

Another	example	of	a	symmetry	group	that	also	arises	naturally	in	algebra	is	the	frieze	group
f11, which	was	discussed	in	Section 5.5. The	frieze	group f11 is	the	symmetry	group	of	frieze
patterns	that	have	no	symmetry	other	than	translation, for	example · · · FFFFF · · · . As	stated	in
Section 5.5, we	have

f11 =
{
· · · t−3, t−2, t−1, 1, t, t2, t3, · · ·

}
,

where t denotes	the	smallest	possible	translation	symmetry	to	the	right	of	the	frieze	pattern. We
can	think	of t as t1, and 1 as t0, and	we	can	combine	any	two	symmetries	in f11 by	the	rule
tatb = ta+b. It	can	now	be	observed	that	the	group (f11, ◦) is	isomorphic	to	the	group (Z,+),
where 1 in f11 corresponds	to 0 in Z, where t corresponds	to 1, where t2 corresponds	to 2,
where t3 corresponds	to 3, etc.
Observe	that	symmetry	groups	are	not	necessarily	abelian, for	example	the	symmetry	group

of	an	equilateral	triangle. We	mention	that	the	analog	of	Proposition 6.6.1 for	three	dimensional
(and	higher)	objects	also	holds	(and	for	the	same	reasons), but	we	will	not	go	into	details	here.
Also, we	should	note	that	although	every	symmetry	group	of	a	planar	object	is	a	group, not
every	group	arises	as	the	symmetry	group	of	a	planar	object	(see	Exercise 6.6.1).

Exercise 6.6.1. [Used	 in	 This	 Section] Show	 that	 the	 group (W, ∗) given	 in	 Exer-
cise 6.4.3 (4)	is	not	the	symmetry	group	of	any	planar	object. The	idea	is	as	follows. Given
that W is	finite, if	 it	were	 the	 symmetry	group	of	a	planar	object, it	would	have	 to	be
the	symmetry	group	of	a	 rosette	pattern	 (because	 those	are	precisely	 the	planar	objects
with	finite	symmetry	groups). By	Leonardo’s	Theorem	 (Proposition 5.4.5), we	know	that
any	rosette	pattern	has	symmetry	group	either Cn or Dn for	some	positive	integer n. Find
reasons	to	show	why (W, ∗) is	not	isomorphic	to	any	of	the Cn or Dn groups.

Now	that	we	know	that	symmetry	groups	are	indeed	groups, various	ideas	about	groups	can
be	used	to	gain	a	better	understanding	of	symmetry. Indeed, mathematically	complete	proofs	of
Proposition 5.5.1 and	Proposition 5.6.2, in	which	we	stated	the	classification	of	frieze	patterns
and	wallpaper	patterns	respectively, are	based	on	some	ideas	from	group	theory	that	are	beyond
the	scope	of	this	text.
One	concept	from	the	theory	of	groups	that	can	be	applied	to	symmetry	groups	is	the	notion

of	subgroups. (Indeed, subgroups	play	an	important	role	on	the	proofs	referred	to	in	the	previous
paragraph.) Given	the	symmetry	group	of	an	object, we	can	ask	which	collections	of	symmetries
of	the	object	form	subgroups. For	example, let	us	examine	the	symmetry	group	of	the	square,
the	operation	table	for	which	we	see	in	Table 6.6.1.
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· 1 r r2 r3 m mr mr2 mr3

1 1 r r2 r3 m mr mr2 mr3

r r r2 r3 1 mr3 m mr mr2

r2 r2 r3 1 r mr2 mr3 m mr

r3 r3 1 r r2 mr mr2 mr3 m

m m mr mr2 mr3 1 r r2 r3

mr mr mr2 mr3 m r3 1 r r2

mr2 mr2 mr3 m mr r2 r3 1 r

mr3 mr3 m mr mr2 r r2 r3 1

Table	6.6.1

An	examination	of	Table 6.6.1 shows	that	this	group	has	nine	proper	subgroups, as	follows:

{1},

{1, r2},

{1,m},

{1,mr},

{1,mr2},

{1,mr3},

{1, r, r2, r3},

{1, r2,m,mr2},

{1, r2,mr,mr3}.

We	found	these	subgroups	by	trial	and	error, though	we	made	use	of	LaGrange’s	Theorem, which
said	that	we	only	needed	to	look	for	subgroups	with 1, 2 or 4 elements.

Exercise 6.6.2. For	each	of	the	following	objects, find	all	proper	subgroups	of	its	symmetry
group.

(1) The	equilateral	triangle.

(2) The	regular	pentagon.

Are	 there	any	general	 rules	 for	finding	 subgroups	of	 symmetry	groups? For	example, does
the	collection	of	all	translation	symmetries	form	a	subgroup? What	about	the	collection	of	all
rotation	symmetries? What	about	the	collection	of	all	rotation	and	all	reflection	symmetries?
The	second	and	third	of	these	collections	of	symmetries	are	not	always	subgroups	(and	example
will	be	given	shortly), but	the	first	always	is, as	shown	by	the	following	proposition.
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Proposition 6.6.2. Suppose	that K is	a	planar	object. LetG denote	the	collection	of	all	symme-
tries	of K. Then	the	following	subcollections	of G are	subgroups	of (G, ◦):

1. All	translation	symmetries	of A;

2. All	translation	and	rotation	symmetries	of A.

Demonstration.

(1). Let T denote	 the	collection	of	all	 translation	symmetries	of K. We	know	from	Propo-
sition 4.6.2 that	 the	composition	of	any	two	translations	 is	a	 translation, and	we	know	from
Proposition 5.1.2 (1)	that	the	composition	of	any	two	symmetries	of	an	object	is	a	symmetry.
Putting	these	two	facts	together, we	deduce	that (T, ◦) satisfies	the	closure	property. The	asso-
ciative	property	for (T, ◦) is	automatically	true, because	it	is	true	for ◦ in	general	(see	Propo-
sition 4.4.2 (2)). Next, we	can	think	of	the	identity	isometry I as	translation	by 0, and	so I is
in T . Therefore (T, ◦) satisfies	the	identity	property. We	deduce	from	Proposition 4.6.5 (2)	that
the	inverse	of	any	translation	is	a	translation, and	we	know	from	Proposition 5.1.2 (2)	that	the
inverse	of	any	symmetry	of	an	object	is	a	symmetry. Putting	these	two	facts	together, we	deduce
that (T, ◦) satisfies	the	inverses	property. All	told, we	see	that (T, ◦) is	a	group	in	its	own	right,
and	hence	it	is	a	subgroup	of (G, ◦).

(2). This	part	is	very	similar	to	Part (1), and	the	details	are	left	to	the	reader.

The	above	proposition	gives	two	very	simple	types	of	subgroups	of	symmetry	groups, though
there	are	other	 subgroups	as	well. The	collection	of	 all	 rotation	 symmetries	 is	not	 always	a
subgroup—it	depends	upon	the	object. For	a	rosette	pattern, for	example, the	collection	of	all
rotation	symmetries	is	a	subgroup; the	reader	is	asked	to	supply	the	details	in	Exercise 6.6.4.
By	contrast, for	a	frieze	pattern	that	has	halfturn	rotation	symmetry, the	collection	of	all	rotation
symmetries	is	not	a	subgroup, because	the	composition	of	two	halfturn	rotations	about	different
centers	of	rotation	is	a	translation, and	therefore	the	closure	property	is	not	satisfied.

Exercise 6.6.3. Is	each	of	the	following	collection	of	symmetries	always	a	subgroup	of	the
symmetry	group	of	a	planar	object. Explain	your	answers.

(1) The	collection	of	all	reflection	symmetries.

(2) The	collection	of	all	translation	and	all	halfturn	rotation	symmetries.

(3) The	collection	of	all	rotation	and	all	reflection	symmetries.

Exercise 6.6.4. [Used	in	This	Section] Show	that	for	a	rosette	pattern, the	collection	of	all
rotation	symmetries	is	a	subgroup	of	the	symmetry	group.
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There	are	many	excellent	texts	that	you	might	wish	to	read	to	further	your	study	of	the	material
discussed	in	this	book	(though	some	of	these	texts	should	be	approached	with	an	understanding
of	 their	 strengths	and	weaknesses). What	 follows	 is	a	very	 idiosyncratically	annotated	 list	of
various	books	you	might	consider	for	further	reading, arranged	by	the	chapters	in	this	text.

Geometry	Basics

• Euclid, “The	Elements”	(3	vols.), Dover, 1956.

One	of	 the	greatest	works	of	Western	Civilization, and	one	of	 the	more	 tedious	as	well. It’s
unquestionably	true	that	our	lives	would	be	very	different	today	if	this	book	had	not	been	written,
but	that’s	no	reason	to	attempt	to	read	the	whole	thing. It	is	well	worth	knowing	what	Euclid
was	trying	to	do, how	he	did	it, and	whether	or	not	he	succeeded, but	it	doesn’t	take	all	three
volumes	to	get	that. Look	it	over, in	any	case. This	used	to	be	required	reading	for	every	person
claiming	to	be	educated. Unfortunately, less	Euclid	in	schools	has	not	been	replaced	by	other
kinds	of	geometry.

• Robin	Hartshorne, “Geometry: Euclid	and	Beyond,” Springer-Verlag, New	York, 2000.

One	of	the	most	impressive	mathematics	textbooks	I have	recently	seen. This	text, meant	as	a
companion	to	Euclid’s	“The	Elements,” does	not	summarize	Euclid, but	rather	explains	what	his
conceptual	understanding	was	and	how	it	differs	from	our	contemporary	approach, and	shows
how	Euclid	can	be	brought	mathematically	up	to	date. Though	most	of	the	book	is	aimed	at
an	audience	of	junior	or	senior	level	college	mathematics	majors	(and, in	particular, makes	use
of	abstract	algebra), much	of	the	discussion	of	Euclidean	geometry	in	the	first	two	chapters	is
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accessible	to	a	broader	audience, and	well	worth	the	price	of	having	to	skip	over	some	techni-
calities. Hartshorne	has	done	an	astonishing	job	of	figuring	Euclid	out, making	this	a	substantial
book	with	equally	substantial	rewards.

Polygons

• Martha	Boles	&	Rochelle	Newman, “The	Golden-Relationship, Book	1,” Pythagorean
Press, 1987.

A workbook	 that	 actually	 has	 you	 get	 your	 hands	 dirty	with	 geometric	 constructions	 using
straightedge	and	compass. In	between	the	problems	and	projects	are	very	readable	discussions
of	the	Golden	Ratio, Fibonacci	numbers	and	the	like. Some	readers	may	find	the	philosophical
exposition	a	bit	flaky, but	it’s	worth	wading	through	it	for	the	sake	of	the	hands-on	approach.
Besides, how	can	you	go	wrong	with	a	book	that	has	a	recipe	for	“Fibonacci	Fudge”?

• Theodore	A.	Cook, “The	Curves	of	Life,” Dover, 1914.

More	than	you	ever	wanted	to	know	about	spirals, from	rams’	horns	to	spiral	staircases. The	first
and	last	few	chapters	are	worth	reading; the	stuff	in	between	(which	is	a	fair	bit)	makes	for	fun
browsing.

• Matila	Ghyka, “The	Geometry	of	Art	and	Life,” Dover, 1977.

In	spite	of	 the	broad	title, most	of	 the	book	focuses	on	the	Golden	Ratio	and	related	topics.
Some	of	the	material	is	good, though	a	bit	technical; other	parts	of	the	book	are	speculative	(to
put	it	politely), concerning	various	esoteric	theories	the	author	appears	to	believe. Interesting
reading	if	you	can	deal	with	it.

• H.	E.	Huntley, “The	Divine	Proportion,” Dover, 1970.

A rhapsody	about	the	Golden	Ratio	(a.k.a.	the	Divine	Proportion), and	beauty	in	mathematics
in	general. Some	of	the	material	is	philosophical, some	fairly	technical. It’s	worth	picking	bits
and	pieces	out	of	this	book.

• Robert	Lawlor, “Sacred	Geometry,” Crossroad, 1982.

Great	pictures, and	all	kinds	of	esoteric	theories—with	lots	of	geometrical	constructions	thrown
in. You	will	have	to	decide	for	yourself	what’s	going	on	here, because	I am	not	sure.
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Polyhedra

• Peter	R.	Cromwell, “Polyhedra,” Cambridge	University	Press, Cambridge, 1997.

A lovely	text	for	the	non-specialist. There	is	a	wealth	of	historical	information	on	the	study	of
polyhedra, wonderful	illustrations, and	an	excellent	choice	of	topics, ranging	from	such	stan-
dards	as	the	Platonic	solids	to	less	well	known	(to	a	popular	audience)	gems	such	as	Descartes’
Theorem	on	angle	defects	and	Connelly’s	flexible	sphere. The	one	real	drawback	is	the	lack	of
exercises	for	the	reader, devaluing	this	book	as	a	textbook, but	well	worth	reading	nonetheless.

• Marjorie	Senechal	and	George	Fleck, “Shaping	Space,” Birkhäuser, Boston, 1988.

This	book	is	the	proceedings	from	a	conference	on	various	aspects	of	polyhedra	and	related
topics, which	might	sound	dull	until	you	take	a	look	at	it—looking	through	this	book	makes	me
wish	that	I had	been	at	that	conference! Though	a	few	of	the	articles	are	quite	technical, many
are	aimed	at	a	general	audience, including	a	nice	history	of	the	study	of	polyhedra. The	book	is
very	well	illustrated. I wouldn’t	necessarily	recommend	buying	this	one	unless	you	are	a	hard
core	polyhedra	fan, but	it	is	well	worth	a	browse.

Higher	Dimensions

• Edwin	A.	Abbott, “Flatland,” Dover, 1952	(or	other	editions; also	available	on	the	web).

A minor	classic, with	heavy	emphasis	on	both	words. “Flatland”	recounts	the	adventures	of	A
SQUARE,	who	lives	in	a	2	dimensional	world. The	first	part	of	the	book, a	satire	of	the	Victorian
society	in	which	Abbott	lived, describes	the	racist	and	sexist	social	order	in	which	our	hero	lives.
The	second	part	of	the	book	describes	A SQUARE’S encounter	with	lower	and	higher	dimen-
sional	beings, thus	introducing	the	reader	to	some	important	ideas	about	the	fourth	dimension
and	higher. Neither	great	writing	nor	brilliant	mathematics, “Flatland”	straddles	the	fence	so
well	that	its	place	in	the	canon	is	assured. (Be	careful	with	the	introductions	to	various	editions
of	“Flatland”—the	one	by	Banesh	Hoffmann	in	the	Dover	edition, and	the	one	by	Isaac	Asimov
in	the	HarperCollins	edition, both	entirely	miss	the	point	of	the	book.)

• Dionys	Burger, “Sphereland,” Perennial	Library	(Harper	&	Row), 1965.

A modern	 sequel	 to	 “Flatland,” introducing	many	mathematical	 ideas	 recognized	as	 impor-
tant	since	the	advent	of	Einstein’s	theory	of	relativity	(which	post-dates	“Flatland”	by	25	years).
“Sphereland”	was	written	by	a	mathematician, which	shows	in	both	the	well	chosen	mathemat-
ical	topics, and	the	less	than	gripping	narrative	style. Though	mathematically	more	substantial
than	“Flatland,” it	lacks	the	latter’s	satirical	bite.

• Rudy	Rucker, “The	Fourth	Dimension: a	Guided	Tour	of	the	Higher	Universes,” Houghton
Mifflin, 1984.
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A fun	book	covering	a	lot	of	serious	material, and	some	rather	esoteric	stuff	 to	boot. Rucker
makes	higher	dimensions, relativity	and	geometry	enjoyable	and	surprising	in	a	way	no	one
else	can. Lots	of	good	problems	and	puzzles, and	great	quotes	and	illustrations. Come	to	your
own	conclusions	about	the	more	speculative	stuff—I’m	sure	Rudy	wouldn’t	have	it	any	other
way.

• Thomas	 F.	 Banchoff, “Beyond	 the	Third	 Dimension,” Scientific	American	 Library, NY
1990.

I wish	I had	written	this	one, though	it	is	just	as	well	that	I didn’t, because	it	is	hard	to	imagine
that	anyone	else	would	have	come	close	 to	doing	 it	as	well	as	Banchoff	 (a	serious	 research
mathematician	with	a	genuine	interest	in	reaching	a	broad	audience). This	book	is	such	a	care-
fully	thought	out	and	beautifully	illustrated	treatment	of	higher	dimensions	that	it	could	make
a	fine	coffee	table	book, though	don’t	let	that	fool	you—this	book	discusses	serious	stuff. The
excellent	choice	of	 topics	 range	 from	unfolding	and	 slicing	higher	dimensional	cubes	 (with
great	computer	graphics)	to	perspective	and	scaling. After	reading	the	classics	“Flatland”	and
“Sphereland,” this	would	be	an	excellent	next	place	to	which	to	turn	if	you	want	to	know	more
about	higher	dimensions.

• A.	K.	Dewdney, “The	Planiverse,” Poseidon	Press, 1984.

A very	detailed	exploration	of	what	a	2-dimensional	world	could	really	be	like, wrapped	in	a
somewhat	silly	narrative. The	emphasis	is	not	on	mathematics	(as	in	Flatland), but	on	physics,
biology	and	technology	in	2	dimensions. What	would	a	2-dimensional	sailboat	look	like? How
would	2-dimensional	intestines	keep	from	splitting	a	creature	in	two? It’s	all	quite	fun, though	a
bit	more	than	you	might	want	to	know.

• Michio	Kaku, “Hyperspace,” Anchor, 1994.

A rhapsody	about	the	latest	theories	of	physics	(for	example, string	theory, parallel	universes,
wormholes	and	the	like), and	their	relation	to	mathematics, especially	the	study	of	higher	di-
mensions. Written	by	a	physicist, it	has	the	advantage	of	an	insider’s	view	of	the	latest	physical
theories, and	the	disadvantage	of	a	physicists	view	of	mathematics—which	to	this	mathemati-
cian	seems	a	bit	distorted. The	first	few	chapters	on	higher	dimensions	contain	some	interesting
historical	discussion	of	the	rise	of	popular	interest	in	the	subject, but	the	mathematical	ideas
can	be	found	treated	better	elsewhere. If	you	want	to	learn	about	physics, then	by	all	means
read	this	book.

• Charles	H.	Hinton, “Speculations	on	the	Fourth	Dimension,” Dover, 1980.

Probably	a	must	for	hard-core	4th	dimension	fans, but	not	necessarily	for	anyone	else. Hinton,
a	mathematician	obsessed	with	the	4th	dimension, wrote	a	variety	of	essays	and	“Flatland”	style
stories	that	have	been	excerpted	and	collected	by	Rudy	Rucker	in	this	volume. The	fiction	at-
tempts	to	be	more	scientific	than	“Flatland”	(having	a	different	sort	of	2	dimensional	world, and
anticipating	the	later	book	“The	Planiverse”), but	the	narrative	is	tedious, and	imbued	with	Hin-
ton’s	mystical	ideas. The	essays	are	fine	in	part, but, as	with	the	fiction, there	is	better	elsewhere.
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Symmetry	of	Planar	Objects	and	Ornamental	Patterns

• Herman	Weyl, “Symmetry,” Princeton, 1952.

A classic	by	one	of	the	great	mathematicians	of	the	20th	century. The	caliber	of	the	philosophical
and	historical	discussions	reflect	the	stature	of	the	author. Weyl	does	lapse	into	some	overly
technical	passages, but	they	are	well	worth	wading	through	for	the	rest. Great	illustrations	as
well.

• Farmer, David, “Groups	and	Symmetry,” AMS,	1996

The	idea	is	of	this	book	is	great: an	exposition	of	lovely	mathematical	topics	including	symmetry,
ornamental	patterns	and	groups, aimed	at	non-mathematicians, done	not	by	lecturing	but	by
brief	discussion	combined	with	lots	of	‘tasks’	for	the	reader	to	explore. Unfortunately, the	writing
is	at	times	awkward, the	choice	of	terminology	is	on	occasion	unfortunate, the	organization	is
poor	and	the	‘tasks’	vary	from	trivial	to	extremely	hard	with	no	warning. A few	extra	revisions
would	have	helped. A well-meaning	book	that	does	not	quite	live	up	to	its	promise.

• George	E.	Martin, “Transformation	Geometry,” Springer	Verlag, 1982.

A very	technical	book	appropriate	for	people	with	at	minimum	some	Calculus	level	mathemat-
ics	(though	Calculus	per	se	is	not	required). The	book	has	a	very	nice	treatment	of	frieze	and
wallpaper	groups, tilings, and	projective	geometry. This	one	demands	serious	study.

Tilings

• Branko	Grünbaum	&	G.	C.	Shephard, “Tilings	and	Patterns,” W.	H.	Freeman, NY,	1987.

The	ultimate	reference	on	the	mathematical	theory	of	tilings	and	other	planar	ornamental	pat-
terns, this	massive	book	will	surely	be	the	definitive	source	in	the	foreseeable	future. Though
most	of	the	text	is	mathematically	sophisticated, the	lovely	introduction	is	accessible	to	all, and
the	pictures	and	figures	throughout	the	text	are	great. I would	not	recommend	buying	this	one
unless	you	are	planning	a	serious	study	of	the	subject, but	it	is	well	worth	looking	through.
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