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ABSTRACT 

A combinatorial Chern-Weil theorem for arbitrary oriented 2-plane bundles 
with even Euler class over surfaces is proved. Along the way a simple method 
is developed to use exterior angles to calculate the curvature at the vertices of 
a large class of non-convex, non-immersed surfaces in R 3. 

1. Pre l iminar i e s  

Various methods have been developed for calculating combinatorial charac- 

teristic classes for tangent and normal bundles of  manifolds (see [HT], [Ba2], 

[BM], [GT] for a few examples). Recently, partly due to the interest of  

physicists in what they refer to as Lattice Gauge Theory, there have been 

efforts to work combinatorially directly with arbitrary bundles, as in [PS]. (It is 

true that all bundles can be dealt with via tangent and normal bundles, but it 

seems desirable to deal with arbitrary bundles directly.) It would be nice to 

have an approach based on curvature (as opposed to, say, obstruction theory), 

thus allowing for a combinatorial Chern-Weil type theory for arbitrary 

bundles. In this paper we develop such a theory for oriented 2-plane bundles 

with even Euler characteristic over surfaces. Our procedure has two stages: 

first, one passes from smooth vector bundles to a combinatorial analog of  

vector bundles; second, one computes Euler classes in a purely combinatorial 

manner from the combinatorial bundles. To emphasize that this last step is 

indeed combinatorial, we will do it first. (This whole procedure is analogous to 
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the two stages used to compute the simplicial homology of smooth manifolds: 
first one triangulates the smooth manifold, and then one computes the 
simplicial homology of the triangulation - -  the latter step being the purely 
combinatorial one.) It is hoped that the present methods will generalize to 
higher dimensions and codimensions. 

Partly because of a needed result, and partly for motivation, we will discuss 
the following topic in polyhedral geometry before proceeding to characteristic 
classes. There are (at least) three ways to measure the curvature at the vertices 
of a polyhedral surface in 113. The simplest way is to use the angle defect 

d~ -- 2x - X ~  a, where the a are the angles of the triangles containing vertex 
v. The properties of d~ are well known (see [G 1 ] for example). (Note that the 
angle defect does have a smooth analog in terms of the perimeters of geodesic 
disks.) The second method of finding the curvature of a polyhedral surface is 
the Morse-theoretic approach of [Ba 1] and [Ba3], which works very nicely (and 
which also has a smooth analog). The disadvantage of both these methods is 
that they do not correspond to the usual way one thinks of curvature for 
smooth surfaces (e.g. Gauss' original approach); also, they are not useful for 
our treatment of characteristic classes. The third method for finding polyhed- 
ral curvature is by exterior angles, which is analogous to Gauss' approach to 
smooth surfaces. Exterior angles have been widely studied by combinatoria- 
lists for convex polyhedra in all dimensions (see [G 1] and [G2] for references). 
In w 6 and 7 of this paper we give a completely elementary treatment of 
exterior angles that works for a reasonable class of non-convex, non-immersed 
surfaces in R 3, and which seems to shed some light on the geometry of such 
surfaces. Hopefully this approach will generalize to higher dimensions. For 
those only interested in polyhedral geometry, the relevant sections (w 6 and 7) 
are independent of the rest of the paper (though the reverse is not true). 

The outline of the paper is as follows. In w we state some definitions and 
results concerning polyhedral geometry of surfaces. These results are proved in 
w and 7. In w we discuss 2-plane bundles; in w we discuss combinatorial 
analogs of smooth vector bundles; in w our combinatorial Chern-Weil 
theorem is proved. 

2. Extrinsic curvature for polyhedral surfaces 

SOME NOTATION. Let S + be an open hemisphere in S 2, given the usual 
orientation. If x, y, z E S  +, let (x, y) denote the geodesic arc with x and y its 
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endpoints, and let (x, y, z) denote the geodesic triangle with x, y and z its 
vertices. 

DEFINITION. Given three points x, y, z E S  +, let the signed angle a(x, y, z) 
be the angle (in [ - rt, to]) from ix,  y) t o / z ,  y) ,  positive or negative depending 
upon whether ( x , z , y )  is positively or negatively oriented. Also, let 
Area/x,  z, y)  be the signed area of the triangle ix,  z, y) ,  positive or negative 
depending upon whether (x, z, y)  is positively or negatively oriented. 

DEFINITION. Let C, = (al,.  �9 �9 a,) be a triangulation of S 1, with a given 
orientation, and let f :  C, ~ S + be a simplexwise geodesic (abbreviated SG) 
map (i.e f is a unit speed geodesic on each interval [ak, ak+ 1]). Furthermore, 
a s s u m e f  is injective on each interval. Let x E S + be any point. Define the area 
of f (C, )  with respect to x to be 

A(f, x) = ~ Areaix, f(ak),f(ak+l)). 
k=l  

THEOREM 2.1. Let S + be an open hemisphere in 8 2, and let f :  C, --- S + be 
an SG map as above. Then A ( f ,  x) is independent of the choice of x E S +. 

This theorem is proved in w We now apply the theorem to polyhedral 
surfaces. To allow for more interesting geometric situations than is possible 
with embedded complexes, we make the following 

DEFINITION. Let /~ be an abstract n-dimensional simplicial complex, 
and let f :  (vertices of / ~ } - ' R  k be a map such that if {Vo . . . . .  v,} are 
the vertices of an n-simplex in/~, then { f (v0) , . . . ,  f(v,)} are affinely indepen- 
dent in R k. Let K denote the collection of  simplices in R k with vertices 
{ f (vo) , . . . ,  f(vp)}, for every simplex {Vo . . . . .  %} in/~; we call Ka  simplexwise 
embedded complex in R k. 

From now on we will restrict our attention to closed, oriented, simplexwise 
embedded surfaces in R 3. In order to have a meaningful notion of extrinsic 

curvature, we need some local restrictions somewhat analogous to being 
smooth, and quite similar to the transverse fields originally considered by [C], 
and more recently by [L]. 

DEFINITION. Let K C R 3 be an oriented simplexwise embedded surface. 
For any simplex q ~ K ,  q* will denote its barycenter. K ~ will denote the 
set of  i-simplices of  K. For each 2-simplex cr ~ K ,  define G(tT*)~S 2 to be the 



196 ETHAN D. BLOCH Isr. J. Math. 

unit normal to tr, corresponding to the orientation of tr inherited from the 
orientation of K. K is called star normal at vertex v ~ K  if the set 
{G(a*) [ a ~ K  ~ n star(v, k)} is contained in an open hemisphere in $2; K is 
called star normal if it is star normal at all its vertices. If K is star normal, we 
then choose, for each vertex v~K,  some point G(v) in the geodesic convex hull 
of the set {G(a*) [ tr ~ K ~2~ A star(v, K)}. For any such set of choices, we call the 
map G" {a* I o ' ~ K  (2)} to K(~ S 2 a combinatorial Gauss map on K. 

REMARKS. (1) There are some useful equivalent definitions of star norma- 
lity. For example, star normality at a vertex vEKis  equivalent to the existence 
of  a vector G(v)~S 2 so that for each 2-simplex a~star(v ,  K), orthogonal 
projection from G(a*) to the line containing G(v) is an orientation preserving 
injection. This definition is seen to be equivalent to the existence of an 
oriented plane P~ containing v so that for each 2-simplex a Estar(v, K), 
orthogonal projection from a to P~ is an orientation preserving injection. 
Finally, for any vector x ~ S ~, let Sx c S 2 denote the open hemisphere centered 
at x. Then star normality at v is equivalent to the condition that 

O {Sa(~.)I a ~ K  ~) N star(v, K)} § ~ .  

(2) If  G(v) is in the geodesic convex hull of the set 

{G(a*) I a E K  (2) r star(v, K)}, 

then G(a*)~Sa(~) for all 2-simplices cr in star(v, K). 
(3) Not all polyhedral surfaces are star normal. For example, approximate 

the seam of  a baseball with a polyhedral curve, and take the cone on this curve 
from the center of the ball. However, it is seen that a fine enough 
C~176 of a smooth surface in R 3 will be star normal (simply project 
onto the tangent plane). 

DEFXNmON. Let K be as above, let G be a choice of  Gauss map, and let 

v ~ K  be a vertex. Let P~ be as in Remark (1) above. Orthogonally project 
star(v, K) onto P~. Let wrap(v, K) be defined to be the winding number  of the 
projection of link(v, K) about the origin in P~. (Equivalently, wrap(v, K) is the 
number  of preimages in star(v, K) under the projection of any point suffi- 
ciently near the origin in P, .) Let { r / i , . . . ,  r/p } be the 2-simplices of  star(v, K) in 
order corresponding to the orientation of K. Choose an open hemisphere 
S + E S  2 containing the set 

{G(v)} tO {G(a*) I a ~ K  (z) f) star(v, K)}, 
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which exists by the definition of star normality. Let Cu = (al . . . .  , ap) be a 
triangulation o f S  1, and let f :  Cp ---, S~t~) be the SG map given byf(a~) = G(r/*). 
Finally, let A (v, K) be defined by A (v, K) = A ( f ,  G(v)). We define the extrinsic 
curvature e, at v to be 

e~ = A(v, K) - 2rt[wrap(v, K) - 1]. 

LEMMA 2.2. Let K be a closed, oriented, star normal, simplexwise em- 

bedded surface in R 3, and let G be a combinatorial Gauss map on K. For all 

vertices v ~ K ,  the quantities A(v, K), wrap(v, K) and e~ are independent o f  the 

choice o f  combinatorial Gauss map. 

PROOF. It suffices to show that each of A(v, K) and wrap(v, K) is indepen- 
dent of the choice of combinatorial Gauss map, for all vertices v ~ K .  For 
A (v, K) this follows immediately from Theorem 2.1. For wrap(v, K), the point 
is to observe that the set of all possible choices of G(v) is a geodesically convex 
subset of an open hemisphere of S 2 (by definition). Call this set Q. If x, y ~ Q 
are two choices for G(v), connect them with a path in Q. It is now easy to use 
this path in Q to construct a homotopy of the appropriate projections of 
link(v, K), and the lemma follows. [] 

The following result, proved in w shows that e~ equals the angle defect 
referred to in w 1. 

THEOREM 2.3. Let K be a closed, oriented, star normal, simplexwise 

embedded surface in R 3. For each vertex v~  K, e, = 2rt - Z~a a, where the a are 
the angles o f  the tringles containing vertex v. 

REMARKS. (1) The need for the wrapping number  in the definition of ev is 
due to the existence of simplexwise embedded surfaces which "do not look 
like" C~176 of smoothly immersed surfaces in R 3. It is seen that a 
C~-triangulation K o f a  smooth surface in R 3 has wrap(v, K) = 1 at all vertices. 

(2) Theorem 2.3 shows that e~ is invariant under simplexwise linear local 
isometries, since that result is evident for the angle defect. (A simplexwise 

linear map (SL for short) is a map from a simplicial complex into R ~ which is 
affine linear on each closed simplex. An SL map is a local isometry if  it 
preserves the lengths of 1-simplices.) The following example shows that 
neither wrap(v, K) nor A (v, K) alone are invariant under SL isometries. 

EXAMPLE. Let B4 (respectively Ba) be a square (resp. octagon) in the 
x - y  plane, with sides of unit length and center at the origin. Let 2 = 
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(~/14 - 2,r and let K be the suspension of B8 from points (0, 0, 2) and 
(0, 0 , -  2). Define an SL map f :  K----R 3 by wrapping B8 twice around B4 
(taking vertices to vertices), and havingri(0, 0, + 2)) = (0, 0, + 2). The collec- 
tion of simplices f(K) is a simplexwise embedded complex. The choice of 2 
makes f an SL local isometry K ~ r i K ) .  However, it is easy to see that 
wrap((0, 0, 2), K) = 1, whereas wrap(r/0, 0, 2), f(K)) = 2. Also, by consider- 
ing the angle defect d~, it is seen that 

A(f(O, O, 2), f(K)) = A((0, 0, 2), K) + 2n. 

QUESTION. Are A (v, K) and wrap(v, K) invariant under SL local isometries 
that are injective, or locally injective? 

3. Remarks on 2-plane bundles 

From this point on, assume all manifolds are closed, smooth and oriented, 
all maps between manifolds are smooth and orientation preserving, and all 
bundles are smooth and oriented. Some notation: Gm (R k) is the Grassmannian 
of m-planes in R k, Gm(R k) is the Grassmannian of oriented m-planes in R k, 
and ?m(R k) (resp. ~m(Rk)) is the canonical bundle over Gm(R k) (resp. Gm(Rk)). 
Gl(m, R) is the general linear group of real m • m matrices; Gl+(m, R) is the 
subset of Gl(m, R) of matrices of positive determinant. If ~ is an m-plane 
bundle, let B (~) denote the base space of ~, and let Z(~) E H m (B(~), R) denote 
the Euler class of ~. 

Let ~ be a smooth (oriented) m-plane bundle. It is a standard result that ~ can 
be classified by maps g: B(~) ~ Gm (R k) for sufficiently large k; in other words, 

~ g*(~m(Rk)) for such maps g. In our present treatment, classifying maps are 
used to give bundles geometric structure, necessary for a Chern-Weil type 
theorem. 

It follows from the definition that for an m-plane bundle ~ to be classified in 
Gm(R"+~), ~ must be isomorphic to g*(~,m(Rm+l))=g*(TSm) for some 
mapg:B(~)~Gm(Rm+l )~S  m. Therefore, Wk(~)=0 for k §  or m, and 
PK(~) = 0 for k § 0 or m/4 (the latter only if m/4 is an integer). Whereas this is 
clearly a very restrictive condition in general, the following lemma gives one 
situation where such classifications are possible. Recall that Gz(R 3) -~ S ~. 

LEMMA 3.1. Let ~ be a 2-plane bundle over a surface. The following are 
equivalent. 

(1) Z(~) is even. 
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(2) ~ is isomorphic to the pullback o f  the tangent bundle o f  S 2 via some map 

B( ~) ~ S 2, and any two such maps are (smoothly) homotopic. 

PROOF. (1) =* (2). Smooth, oriented 2-plane bundles over smooth, oriented 
surfaces are completely classified by their Euler classes (see [DW]; they call the 
Euler class the "integral WE"). By hypothesis X(~) = 2p [B(~)] for some integer 
p,  where [B(~)] is the fundamental  cohomology class in H2(B(~), R). For any 
smooth, oriented surface there exists a smooth map g : B(~)-~ S 2 of degree p. 
Then 

x(g*(TS2)) = g*(z(TS2)) = g*(2[$2]) = 2p[B(~)], 

and hence ~ ~-. g*(TS2). 

Suppose g, h : B(~)--* S z are maps such that g*(TS 2) ~ h*(TS2). Then 

2(deg(g))[B(~)] = 2g*([$1]) = g*(2[SZ]) = g*(z(TS2)) = x(g*(TSE)) 

= z(h*(TS2)) . . . . .  2(deg(h))[B(~)]. 

Therefore deg(g)--deg(h) ,  and hence g is homotopic to h by the Hopf-  
Whitney Theorem [Wh, p. 244], which states that [B(~), S ~] ~ H2(B(~), R), 
where [B(~), S 2] denotes the homotopy classes of maps B(~) --- $2; the isomor- 
phism is given by g w-~ (deg(g))[B(~)]. By smoothing theory, g is in fact 
smoothly homotopic to h. 

(2)=~ (1). This is straightforward. [] 

REMARK. The homotopy equivalence of maps in the lemma is not entirely 
trivial, since in general the proof  of the homotopy classification of bundles 
involves going into higher dimensional Grassmannians (see [H, p. 32] for 
example). 

A definition we will need later is 

DEFINITION. Let ~ be a smooth m-plane bundle, and let g : B(~) ~ Gm(R k) 
be a classifying map for ~. I f N i s  a manifold, and h : N - , B ( ~ )  is a map, then 
the bundle h*(~) over N is given the induced classifying map g o h : N --, G,, (R k). 
(Since (g o h)* = h* o g*, the map g o h : N ~ G,,(R k) really is a classifying map 

for h*(~).) 

4. Curvature and Euler class for 2-dimensional lattice gauge fields 

In order to calculate characteristic classes combinatorially, we will replace a 
smooth bundle by a combinatorial object (analogous to the process of triangu- 
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lating a smooth manifold). Such an object is called a lattice gaugefield (LGF 
for short), as defined below. (The name "lattice gauge field" was coined by 

physicists.) A related combinatorial object we use is a lattice classifying map 
(LCM for short), also defined below. We will then define curvature, and an 

Euler class, in this combinatorial situation. All homology and cohomology has 

coefficients in R, and is simplicial, cellular or singular depending on the 

situation in the obvious way. 

DEFINITION. Let K be a simplicial complex. K' will denote the first 

barycentric subdivision of K; for any simplex r /EK, r/* will denote its 

barycenter. A lattice classifying map O/K into Gm(R k) (called an (m, k)-LCM 
for short) is a map O:(K')t~ k) for some k > m. An oriented (m, k)- 
LCM O/K is a map O : K ' )  t ~  Gm(Rk), with the added condition that for 

every 1-simplex t / =  (z*, a * ) ~ K ' ,  orthogonal projection from O(r*) to O(a*) 

is an orientation preserving injection. A Gl(m, R)- valued lattice gaugefield on 
K' (called an m-LGF for short) ~/K is a map f~ : (K') tl~---, Gl(m, R), and an 

oriented m-LGF is a map f~ : (K')tl~-- Gl+(m, R). Given an oriented (m, k)- 

LCM O/K, one obtains an induced oriented m- LGF f~/K as follows. For each 

vertex a* ~ K '  (a a simplex in K), choose an arbitrary orientation preserving 

orthogonal map r~. : O(a*) --- R m. Then, for every 1-simplex r /=  (z*, a*) EK' 
(where we let r have higher dimension than a), let ~(t/) : R m ~ R m be defined 
by f~(r/)= r,. o l-I,,, o (r,.) -1, where YI,~ is orthogonal projection in R k from 
O(z*) to O(a*). (Another approach to constructing induced m-LGF's would be 
to use Riemannian parallel transport in Gm(R m + 1).) 

Two ways of obtaining m-LGF's are as follows. (1) Let K be an orientable 
simplexwise embedded m-manifold in R k. An (m, k)-LCM O/K is called a 

tangent (m, k)-LCM for K if it is an oriented (m, k)-LCM such that O(r*) is 

parallel to z for all simplices z E K (and has the same orientation as r if  z is an 

m-simplex). Not every K has a tangent (m, k)-LCM (orientability is the issue 

here), but it is evident that suitable restrictions on K, similar in nature to the 

definition of star normality in w will insure the existence of a tangent (2,3)- 
LCM for a surface that is simplexwise embedded in R 3. If K has a tangent 

(m, k)-LCM, one then constructs an induced tangent m-LGF from the (m, k)- 

LCM as before. We will denote tangent (m, k)-LCM's and m-LGF's by OT/K 
and ~T/K respectively. It should be noted that i f K  is simplexwise embedded 

but not locally embedded (i.e. embedded on the star of  every vertex), then the 

tangent (m, k)-LCM and m-LGF of K will not necessarily correspond to the 

tangent bundle of K. 
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(2) Let ~ be a smooth m-plane bundle, and suppose a classifying map 
g:  B ( ~ ) ~  G,,(R k) for ~ is chosen. If  t : K-,B(~) is a C~-triangulation, then 
the assignment O(a* )=  g(t(a*)) for each simplex a ~ K  is an (m, k)-LCM, 
called O(~, g)/K. If  t is a fine enough triangulation, then O(~, g)/K will be 
oriented, and will thus give rise to an oriented m-LGF, called D(~, g)/K. We 
will refer to O(~, g)/K and ~(~,  g)/K as being induced by g and t. 

In order to make use of the ideas of w we will restrict our attention from 
now on to oriented (2,3)-LCM's. K will always denote a compact, oriented, 

triangulated surface. 

DEFINITION. Let K be as above, and let O/K be an oriented (2,3)-LCM. If  
N E G2(R 3) is a 2-plane, let N *~ be the (oriented) normal vector to N. We say O 
is simplex-normal if for each 2-simplex a = (u, v, w) ~ K, there is an open 
hemisphere H~ c S 2 such that 

{O(t/*) * [ t /Estar(u,  K) U star(v, K) U star(w, K)} c H~. 

Now assume O/K is simplex-normal. Let vEK be a vertex. Suppose the 
vertices of link(v, K') are {x~, Yt . . . .  , xp, yp} in order corresponding to the 
orientation of K, where the Xk are the barycenters of the 2-simplices, and the Yk 
are the barycenters of 1-simplices. Choose some 2-simplex a Estar(v, K); 
define an SG map f :  link(v,K')~H~ by setting f(z)= O(z) * for each z E  
{x~, y~ . . . .  , xp, yp }. We define the curvature of O/K at v to be Tv = A (f ,  O(v)#). 

Define a homology class C(O/K)E Ho(K) by letting C(O/K) be represented 
by the simplicial 0-chain with coefficient (1/2n)Tv at each vertex vEK. Let 
C ( O / K )  E HE(K, R) be the Poincar6 dual of C(O/K) (in dual cell cohomology). 

It is also possible to calculate C(O/K) directly from a 2-LGF f~/K obtained 
from O/K. Whereas it is intuitively more simple to calculate C(O/K) as above, 
it is possible to give a more explicit formula using f~/K; such a formula, and 
~/K in general, would be much easier to use on a computer  than O/K. 

First, suppose (a, b, c) is a triangle contained in an open hemisphere in S 2, 
with sides of  length a, fl and 7, and angles A, B and C. Let Na, Nb and Arc be the 
oriented normal planes to a, b and c, and let Ha,b, I-Ia, c and lib, c be the 
orthogonal projections from Na to Nb, etc. Let ri:N i - -R2 'be  an arbitrary 
orientation preserving orthogonal map for i -- a, b and c, and let 

~-~a,b = rb ~ ~ -1: R2--* R2, 

and similarly for fla,~ and flo,~. We want to compute Area(a,  b, c) using only 
the maps fl~,b, fla,c and f~b,~. 
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Finding the unsigned area is straightforward. First, it is not hard to see that 

cos a = det(Db.c), cos fl = det(Ila,c) and cos y = det(f~a.b). Using the spherical 
law of cosines for sides, it is then seen that 

COS A = 
cos a -- cos fl cos y 

sin fl sin y 

cos  a - cos  fl  c o s  ~, 

, / 1  - cos  2 p - cos  2 ~, + cos  2 p c o g  ~, 

det(~b,~) - det(fla,c)det(~'l.,b) 

~/1 - det(~a,c) 2 - det(flb,c) 2 + det(fl..c)2det(~a,b) ~ ' 

and similarly for the other angles of the triangle. The unsigned area of (a, b, c ) 

is A + B + C - n, which is thus computable in terms of  f~a,b, ~a,c and Ilb, c. 
The orientation of (a, b, c ) is calculated as follows. Let (El, E2 } be an oriented 

basis for R 2, and let P = (f~a,c) -1 ~ ~ Then (a, b, c) is positively 

oriented, negatively oriented or has zero area iffP(E~). E2 is positive, negative 

or zero respectively. To see this, note that 

P = ( [ la ,c )  - I  ~ ~'Ib,c ~ l-la,b = ra ~ ( l- la,c)  - I  ~ l lb ,c  o I-!~,b o ( r a ) - I  : R2--)" R 2. 

Therefore 

e ( E , ) .  E~ = (no,~) -1 o n~,c o no ,~ ( ( rD  - ' ( E l ) ) .  ( r D  - ' ( E ~ ) ,  

since ra is an orientation preserving orthogonal map. It is now routine to check 
that (Ha,c)-1o Hb,c ~ ria,b((ra)- 1(El))" (ra)- I(E2) is positive, negative or zero iff 

(a,  b, c) has positive orientation, negative orientation or zero area respec- 

tively. Using these calculations, it is seen that there is an explicit formula for Tv 

at each vertex v ~ K ,  using only the collection of  maps in a 2-LGF f~/K 
obtained from O/K. It should be remarked that this formula for Tv in terms of 

f~/K can be applied to any 2-LGF, not just one obtained from a (2,3)-LCM; 

however, examples show that i fa  smooth 2-plane bundle is classified in G2(R4), 

then the quantities T~ computed by this formula (applied to an induced 

2-LGF) will not always give the Euler class of the original bundle. 

Let K be an orientable, locally embedded surface in R 3 (in particular, K must 

be simplexwise embedded). Further, suppose K is suitably restricted, so that it 
has a tangent (2,3)-LCM OT/K.  If  v~Ki s  a vertex, it is not hard to show that if 

one computes T~ directly from OT/K,  then T~ = A (v, K). (The issue here is that 

in computing T~, one takes into account the normals to the "tangent planes" at 
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the 1-simplices of K, which are ignored in the computation of A(v, K). 
Whereas these normals do affect To in the case of arbitrary (2,3)-LCM's, they 
do not do so when the (2,3)-LCM is a tangent (2,3)-LCM.) If one further 
assumes that wrap(v, K ) =  1, which is the case for fine enough C~-triangu- 

lations of smooth surfaces in R 3, then To = eo, which in turn equals the angle 

defect at v by Theorem 2.3. Hence T o really does generalize the standard notion 

of curvature for polyhedral surfaces. 

DEFINITION. Let Ol/Kand O2/Kbe simplex-normal (2,3)-LCM's. O~/Kand 

02/K are hemispherically related if the same hemispheres H~, for all a E/62), 

can be used in the definition of simplex-normality for both O~/K and 02/K. 

LEMMA 4.1. 
hemispherically 
C(O2/K). 

Let K be a simplicial 2-complex. Suppose O~/K and 02/K are 
related, simplex-normal (2,3)-LCM's. Then C(OI/K)= 

PROOF. By Poincar6 duality, it will suffice to show that C(OI/K)= 
C(02/K) in Ho(K, R). For each vertex v~K, let Tl~ and T2v denote the 

curvatures at v of O/K and 02/K respectively. Let ,/1 and J2 denote the 

simplicial 0-chains on K with coefficients (1/2re)T~o and (1/2re)T2~, respec- 

tively, at each vertex v~K. We thus need to show that ./1 and ,12 are 

homologous. Using the compactness of K, we can find a sequence of simplex- 

normal (2,3)-LCM's Oi/K = ~ / K  = r . . . . .  ~ , /K  = OJK, so that any 
two consecutive elements of the sequence are hemispherically related, and 

differ on at most one vertex of K'. Hence it will suffice to prove that Jt and J2 
are homologous if we assume that Oi/K and 02/K differ on at most one vertex 

tr* of K'. There are three possibilities, depending on the dimension of a. 

First, suppose tr is a vertex of K. Then clearly T~v = T2~ for all vertices vEK 
other than a. On the other hand, the definition of curvature at a, together with 

Theorem 2.1, imply that Tto and T2~ are independent of the values of O~/(tr) 
and O2(a), and hence are equal by the assumption on O/K and 02/K. 

Next, suppose a --- (v, w) is a 1-simplex of K. Then clearly T~z = T2z for all 
vertices z E K other than v and w. Hence 

J ,  = ( 1 / 2 n ) ( T , o -  T 3(v) + ( l / 2 n ) ( T , .  - 

Let f~  and f2~ be the maps used to compute Tj~=A(f~v, O(v)*) and T2v = 
A (f2v, O(v)*), and similarly f o r f  w andf2w. The pairs of  mapsf~ andf2~, a n d f  w 
and f2w, each differ only at tr*. Let r/ and z be the two 2-simplices of K 

containing a. Note that fv(r/*) = f2v(q*),fv(z*) = f2~(z*), and similarly for w. 
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It is now seen that both T~ - T2~ and Ttw - T2w are equal in absolute value to 
the difference of the signed areas of the geodesic triangles 

(fv(q*),  fl~(a*), fv(r*))  and ( f , (q* ) ,  f2o(a*), f~(r*))  

(this uses the fact that everything takes place in a hemisphere). Therefore, by 
taking orientations into account, it is seen that Jl - .I2 = aS, where S is the 
simplicial l-chain on Kwhich has coefficient (I/21t)(Tl~ - T2~) at e, and is zero 
elsewhere. The proof  when a is a 2-simplex is similar, where in this case S has 
support only on @a. [] 

REMARK. The above lemma shows that for two (2,3)-LCM's to be "dif- 
ferent," there needs to be some difference that is not hemispherical; this seems 
to correspond to the fact that smooth bundles are constructed by clutching 
maps, and different bundles need non-homotopic clutching maps. 

5. Combinatorial Chern-Weil theorem for 2-plane bundles with even Euler 
characteristic 

The same assumptions about bundles used in w will apply here. Throughout 
this section, let ~ be a 2-plane bundle with X(~) even. (This restriction is 
because of Lemma 3.1.) We now apply the previous section to give a 
combinatorial expression for the curvature and Euler class of ~. 

DEFINITION. Let g:B(~)----G2(R 3) be a classifying map for ~, and let 
g* : B ( ~ ) ~  S 2 be the associated map of oriented normal vectors, i.e. g ' ( x )  = 

[g(x)]*. A C~-triangulation t : K - - , B ( ~ )  is called g-normal if for each 2- 
simplex a = (u,  v, w ) E K ,  g~(s tar(v ,K)  U star(v,K) U star(w,K)) is con- 
tained in an open hemisphere. 

REMARKS. (1)  For a given classifying map g, not every Coo-triangulation 
K ~ B(~) is g-normal; however, a fine enough triangulation will be. 

(2) If t : K ~ B(~) is g-normal, then O(~, g) /K  is simplex-normal; also, i fL  
is any subdivision of K, then t:  L ~ B(~) will be g-normal. 

DEFINITION. Let ~ and g be as above, and let t : K - - , B ( ~ )  be a g-normal 
C~176 Define the cohomology class C ( ~ ) E H 2 ( B ( ~ ) , R )  to be 
C(~) = (t*) - '(C(O(~, g)/K)).  

As defined, the class C ( ~ ) E H 2 ( B ( ~ ) ,  R) depends on (1) the choice of 
triangulation t : K - - . B ( ~ ) ,  and (2) the choice of  classifying map for ~. The 
following lemma shows that C(~) in fact only depends on the bundle ~ itself. 
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L~MMA 5.1. Let ~ be a 2-plane bundle over a surface with Z(~) even. Let 
g : B(~) --- G2(R 3) be any classifying map for ~, and let t : K ~ M  be a g-normal 
C~-triangulation . 

(i) The cohomology class (t*)-I(C(O( ~, g)/K))EH2(B( ~), R) is invariant 
under subdivision of K. 

(ii) ( t*)- ~(C(O(~, g)/K)) depends only on the bundle ~. 

PROOF. (i) Let L be a subdivision of K. Order the vertices of K, and let 

sd : {0-chains of K} ---, {0-chains of L} be as described in [F, p. 14]. The map 

sd. : Ho(K)~ Ho(L) is an isomorphism; to prove this part of  the lemma it will 
suffice to show that sd.(C(O(~, g)/K))--C(O(~, g)/L). If C~ denotes the 
curvature at vertex vEK with respect to O(~,g)/K, then C(O(~,g)/K) is 

represented by a 0-chain in K that is (1/2n)T v at v. sd.(C(O(~, g)/K)) is 

represented by the 0-chain in L that is (1/2n)Tv at vertices vEL which are 

vertices in K, and 0 at other vertices ofL .  Let ~/L be the (2,3)-LCM defined as 

follows. If r ~ L is a simplex, and ~/~ K is the minimal dimension simplex of K 

containing r, then let @(z*) = O(~/*), where O here is O(~, g)/K. It is easy to 

check that: (1) @/L and O(~, g)/L are hemispherically related, and (2) C(@/L) 
is represented by the same 0-chain as sd.(C(O(~, g)/K)). The desired result 
now follows from Lemma 4.1. 

(ii) First, it follows immediately from (i) that (t*)-~(C(0(~, g)/K)) is inde- 
pendent of the choice of g-normal C~-triangulation, since any two C ~- 
triangulations of B(~) have a common C~-subdivision, which must be g- 

normal (see [W]). 

Next, suppose g, h : B(~)-"  G2(R 3) are classifying map for ~. Since we may 
subdivide our C~-triangulations, it is possible to choose a C~ 
t : K --  B(~) which is both g- normal and h- normal. By Lemma 3.1, g and h are 

smoothly homotopic. Let F,:K X [0, 1]---B(~) be such a homotopy, i.e. 
F0 = g and F~ = h. Subdividing K further if necessary, we may assume that for 

all t~ [0 ,  1], t : K ~ B ( ~ )  is F,-normal. By the compactness of K, there are 
numbers 0 = t~ < t2 ~ " " " ~ t, = 1 such that O(~, Ft,)/K and O(~, Ft,+,)/K are 
hemispherically related for i = 1, 2 , . . . ,  n - 1. Lemma 4.1 now implies that 

C(O(~, g)/K) = C(O(~, Ft,)/K) -- C(O(~, Ft)/g) . . . . .  C(O(~, h)/K), 

and the lemma is complete. [] 

LEMMA 5.2. Let ~ be a 2-plane bundle over a surface with Z(~) even. Then 
(i) if  ~ has a non-zero section, then C(~) = 0; 

(ii) if  h : N---, B( ~) is a smooth map, then C(h*( ~)) = h*(C( ~)). 
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PROOF. (i) Suppose ~ has a non-zero section. This implies that ~ is the 
Whitney sum of a trivial line bundle and some other bundle. Since ~ is an 
oriented 2-plane bundle, this other sub-bundle must  also be an oriented line 
bundle, i.e. it is trivial. Hence ~ is trivial. Since C(~) can be computed with any 
classifying map, by Lemma 5.1(ii), use a constant map g:B(~)-,G2(R3). 
Clearly Tv = 0 for all vertices vEK,  and hence C(~) = 0. 

(ii) Let g:  B(~)--G2(R 3) be a classifying map for ~, and give h*(~) the 
induced classifying map g oh. Let t : K - , B ( ~ )  be a g-normal C~ - 
lation, and let s : L - - , N  be a (g o h)-normal C~176 Let Lt be a 
subdivision of L such that h has a simplicial approximation ht with respect to 
triangulations L~ and K(as in [S] p. 126). Note s : LI ---Nis (g o h)-normal, as 
previously remarked; i fK  and L are chosen fine enough, then we may assume 
that s:  L~--, N is also (g o hl)-normal. Since hl*(~) ~ h*(~), it suffices to prove 
the lemma for h~. This follows from the definition of  h* on the (dual cell) 
cochain level. Let V~Ll be a vertex, and let D(v) be the 2-cell dual to v. If  
hi(v) = w, for some vertex w ~ K ,  then hl(D(v))C D(w), and h~(OD(v))c 
OD(w). For each v ~ L I ,  let degv be the degree of the map h I [D(v)  " D(v)--"  

D(w). Let J denote the dual cell 2-chain on Kwi th  value (1/2n)T~ on D(v), for 
each vertex v~K,  i.e. J represents C(~). Then h*(C(~)) is represented by 
h~(J), which is given by 

hl#( J)(O(v)) = (deg~)J(D(n~(v))), for v~ Lt. 

However, it is not hard to see that for vE L t, the definition of  T~ with respect to 
h*(~) implies that T~ = (deg~)Th,~v), and the lemma now follows. [] 

THEOREM 5.3. I f  ~ is a 2-plane bundle over a surface with Z. ( ~) even, then 
= z ( O .  

PROOF. By combining Theorem I. 11-30 with the proofs of  Corollaries 
V.13-24 and V.13-25, all in [Sp], we obtain the following fact: if to every 
smooth, oriented m-plane bundle ~ over a smooth, oriented, closed manifold, 
m even, there is associated a cohomology class E ( ~ ) ~  H m (B(~), R) such that 
E ( O  commutes with pull-backs, and such that E(~) - 0 whenever ~ has a 
non-zero section, then E(~) = AmZ(~) for some constant Am that only depends 
on the dimension m. The proof  works for each dimension separately. There- 
fore, using Lemma 5.2, C ( ~ ) = A 2 ) ( ~ )  for some constant A2 that does not 
depend on ~. 

It remains to show that A2 = 1; computing one example will suffice. Let 
TS2-,.S 2 be the tangent bundle of the unit 2-sphere in R 3. Note that 
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C(TS2)([S2])  = 2. TS 2 is classified by the identity map i : S 2 - ' ~  S 2 ~ G2(R3). Let 

Kbe a regular tetrahedron centered at the origin in R 3, and with vertices on S 2. 

Then radial projection t: K - , S  2 is an /-normal C~176 By con- 

vexity, it is easy to see that 

Y~ Tv = 4n  ( = the area of $2), 
vEK 

and hence 

C(TS~) ( [S2 ] )  = Y~ ( 1 / 2 n ) T ~  = 2. 
vEK 

S i n c e  z (TS2) ( [S2] )  = x ( S  2)  = 2, A 2 = 1. [] 

6. Area for spherical  cones  - -  proof  of  Theorem 2.1 

If C is a convex geodesic polygon in a hemisphere o f  S 2, with angles ~k at its 

vertices (k = 1 . . . . .  n), then the area bounded by the polygon is known to be 

kzln ~k - -  (n - 2)n. The main step in the proof of Theorem 2.1 is a generaliza- 
tion of this formula to the case where C is not necessarily convex or immersed. 

We will use the notation of w 

DEFINITION. Let C n = (a, . . . .  , a,)  be a triangulation of S ~, with a given 

orientation, and let f :  6",---S + be an SG map (where S + is an open hemis- 

phere in $2). Furthermore, assume f is injective on each 1-simplex of C~. 

Define S: c S + to be the set 

S: = S + - G (great circle containing f((ak, ak + 0)), 
k z l  

where addition is mod(n). Let kbe in { 1 , . . . ,  n }. To each x ES /we  associate a 

quantity t k ( f ,  X) as follows. The geodesics containing (f(ak-~), f(ak)) and 
(f(ak),f(ak+O) divide S + into four regions (two of which might be de- 

generate). We label the regions I, II, III, IV as in Fig. 6.1; the two cases in the 

figure correspond to whether ( f (ak  + l), f (ag  _ i), f ( a k ) )  has positive or negative 

orientation. 

Elk(f, X) is now defined as follows, where the orientation used is that of  

( f(ak+ 1), f(ak-~), f(a~)): 
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f(ak-I) f(ak + ,) 

I I I  ., . .  

�9 " f(ak) � 9  . 
,,,, �9 

�9 I I  

p o s i t i v e  o r i e n t a t i o n  

- I I  -" 
�9 I 

" .  f ( a k )  . .. " 
o 

~ f ( a k  + 1 ) 
f(ak-O 

n e g a t i v e  o r i e n t a t i o n  

Fig.  6.1. 

/~k(f, x )  = 

a(flak + 1), flag), f(ak-,)) -- n 

a(f(a,  +3, f(ak), f(ak-l)) + 7t 

La(f(ak + l), f(ak), f (ak-3)  

x E I U II, pos. orientation, 

x E I U II, neg. orientation, 

x E III U IV, any orientation. 

Finally, for x ESf,  let w(f ,  x) denote the winding number  of f about x. 

THEOREM 6.1. Let f :  C,---,S + be an SG map (with notation as above), 
Assume f is injective on each 1-simplex in C. ; let x ~ S I. Then 

A ( f ,  x) = ~ ilk(f, X) + 2rtw(f, X). 
k = l  

PROOF. For each k E{1 . . . .  , n} let Sk = + 1 depending on whether 
(X, f(ak), f(ak+ I ) )  has positive or negative orientation. Suppose 
(x, f(ak), f(ak+ 1)) has (postive) angles 5k at f(ak), ek at f(ak+ ~), and ~/k at x. 
Then 

Area(x, f (  ak ), f (  ak + l) ) = Sk { Sk + ek + ?Ik -- it) 

= sk ( (5 ,  - ( ~ / 2 ) )  + (e~ - ( ~ / 2 ) )  + ~k}. 

It is easy to see that Z~_ 1 Sk l~k  = 2nw(f ,  x). Next, consider the verticesf(ak); it 

is claimed that fig(f, x) = Sk(Sk -- (n/2)) + Sk-l(ek-I -- (~/2)). Assuming the 
claim is true, the theorem follows because 

A( f ,  x) = ~ Area(x, f(ak), f(ak+O) 
k-l 

= ~: s ~ { ( ~  - ~ / 2 )  + (e, - ~ / 2 )  + ~,} 
k - I  
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_n n 

= Y~ {Sk(Ok -- ~Z/2) + S k - , ( e k - , -  ~/2)} + ~ Skrlk 
k=l k=l 

= X M f ,  x) + 2 w(f, x). 
k=l 

It remains to prove the claim made  above. Let k E { 1 . . . .  , n } be fixed. 

There are four cases, depending on whether each of  S k -  1 and Sk are 1 or -- 1. 

Case 1. S k -  1, Sk = 1. There are two possibilities: either x is in region I and 

( f ( a k + O , f ( a k - 3 , f ( a k ) )  is positively oriented, or x is in region II and 

( f (ak+  ~), f (ak-~) ,  f ( a k ) )  is negatively oriented. In the former case, it is seen 

that a ( f ( a k  + i), f (ak) ,  f (ak -1 ) )  = Ok + ek-I  (see Fig. 6.2(i)). Hence 

Sk(0k -- Zt/2) + S k - l ( e k - i  -- Zt/2) = Ok + e k - I  - -  ~'~ 

= a ( f ( a k  + l), f (ak) ,  f ( a k - I ) )  -- rt 

= f l k ( f , x ) ,  

by the definition of  f l k ( f , x )  in this case. I f  x is in region II and 

( f (ak  + O, f ( a k - O ,  f l ag ) )  is negatively oriented, then 

a ( f ( a k  + l), f (ak) ,  f ( a k - i ) )  = -- (22 -- (Ok + ek- l ) )  = Ok + ek- ,  -- 2rt, 

the negative sign coming from the fact that we are using signed angles (see Fig. 

6.200).  Hence  

Sk(Ok -- rt/2) + Sk_l(~,k_l - -  rr/2) = Ok + ek- ,  -- n = (Ok + ek- ,  -- 2rt) + ~r 

= a ( f ( a k  + i), f (ak) ,  f (ak  - 3) + rr = i lk ( f ,  X), 

by the definition o f  i l k ( f ,  X)  is this case. 

x 

f(al,-,) 1 f(~+O 

.. "J[.ak)" " " - ,  
t 

J 

I 

(i) 

x 

L ~'~ �9 f S  p" f s 

f ( a , _ y  Jta,  J ~ . ~ a k + l )  

(ii) 

Fig. 6.2. 
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Case 2. Sk-1, Sk = -- 1. This case is similar to the previous case. 

Case 3. S k - l = l ,  S k = - - l .  Point  x must be in region IV, though 

(f(ak+ O, f(ak-1), f(ak)) could be either positively or negatively oriented. In 

the former case, it is seen that a(f(ak+O, f(ak), f (ak- l ) )= e k - i -  ~r (see Fig. 

6.3(i)). I f  ( f(ak+ O, f(ak-~), f(ak)) is negatively oriented, then it still holds that 

a( f(ak + O, f(ak), f(ak-1)) = ek-~ -- ~k (see Fig. 6.3(ii)). It is now seen that  

Sk(ak -- (n/2)) + Sk-l(ek-t -- (~/2)) = ilk(f, X) 

similarly to the previous cases. 

X X 

f( ak + l ) ~  f( ak - 1 ) ~ l  

Ok - - _  t _ > ' - . .  
f(ak) - -  J f ( a k )  "- 

f(at-,) f(ak + ,) 
(i) (ii) 

Fig. 6.3. 

Case 4. Sk-1 = -- 1, Sk = 1. This case is similar to the previous case. [] 

We note that the formula in Theorem 6.1 reduces to the s tandard formula 

Y-17=, 7k -- (n -- 2)n whenever f (C , )  is a convex, embedded curve. I f f ( C , )  is a 

convex, embedded curve, then it bounds a well defined region in S+; choose 

any point x in this region. It is easy to see that  (1) w(f ,  x)  = 1, and (2) for each 

k E { 1  . . . . .  n}, x is in region I, and ( f(ak+l), f(ak-O,f(ak))  has positive 

orientation. Hence 

ilk(f, X) = a( f(ak + ,), f(ak), f (ak-  ,)) -- n = ~'k -- n. 

It now follows that 

n 

t k ( L  X) "~ 2nw(f ,  X) = ~ (~'k -- rt) + 2n = Y~ ?k -- (n -- 2)rt 
k - I  k ~ l  k = l  

as desired. 

PROOF OF TrIEORV.M 2.1. We may assume W L O G  that  f is injective on 
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each interval of  Cn. ( I f f  is not injective on some interval, then it maps that 
interval to a point, and hence the cone from x to the image of  this interval has 
zero area in S+; thus f :  Cn-- 'S + can be replaced by the obvious map 
f '  : Cp ~ S+, for some p < n.) Syis the disjoint union of (geodesically convex) 

components.  It is easy to see that the functions i lk(f ,  X) and w ( f ,  x )  are 
constant on each of the components of Sy (although they are not necessarily 
constant on all of S i). Theorem 6.1 then implies that A ( f ,  x )  is constant on 
each of these components. However, A (f ,  x) is defined and continuous on all 
o f S  § (this uses the fact that everything takes place in an open hemisphere). It 
now follows easily that A (f ,  x) is constant for all x in S § [] 

7. Proof of Theorem 2.3 

Before giving the proof  of  Theorem 2.3, we need the following preliminaries. 
As in w assume Kis a star normal simplexwise embedded surface in R 3, and G 
is a combinatorial Gauss map on K. For each vertex v ~ K ,  let f :  Cp ---S6(v) be 
as in the definition of eo (in w 

DEFINITION. Let v E K  be a vertex. Label the 2-simplices in star(v, K) by 
r/l, r h , . . . ,  r/p, in the order corresponding to the orientation of K. Assume v is 
at the origin of R 3, and extend the r/k until they intersect S 2. Call the arcs of 

intersection gk. We say gk and gk + z intersect positively (respectively negatively) 

if  the angle from gk+l tO gk centered at their intersection is positively (resp. 
negatively) oriented in S 2. For each k ~ { 1 , . . . ,  p }, we say v is o f  type I ,  2, 3 or 

4 at k as follows: 

Type 1: 
Type 2: 
Type 3: 
Type 4: 

gk- 1 and gk intersect negatively; gk and gk + ~ intersect negatively. 
gk- J and gk intersect positively; gk and gk + ~ intersect positively. 
gk - ~ and gk intersect negatively; gk and gk + ~ intersect positively. 
gk- ~ and gk intersect positively; gk and gk + ~ intersect negatively. 

See Fig. 7.1. As in w let Sx c S 2 denote the open hemisphere centered at x. 
Now, fixing k, recall that the geodesics containing <G(r/~'_l), G(r/g)) and 
(G(r/~'), G(r/~+ ~)) divide S~v~ into four regions (two of which might be degener- 
ate), called regions I, II, III, IV. We say v is well-matched at k if v is either of 
type 1 or 2 at k, and G(v) is in regions I or II, or if v is of type 3 or 4 at k, and 
G(v) is in regions III or IV; otherwise we say v is missmatched at k.  Finally, we 
define the local error term e k to be 
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07t if v is well-matched at k, 

ek = if v is missmatched at k. 

The global error term is 

1 _p 
e(v, G) = ~ Y. ek ---- �89 (number of missmatches in star(v, K)}. 

k - l  

type 1 type 2 type 3 type 4 

Fig. 7.1. 

LEMMA 7.1. Let K be a star normal simplexwise embedded surface in R 3, 

and let G be a combinatorial Gauss map. Let v E K  be a vertex, let f :  Cp ~ S~t~) 

be as above. Choose k ~ { l , . . . ,  p }, and suppose qk has angle Ot k at v. 

(i) I f  v is o f  type 1 or 2 at k, then (1) (f(q~+O,f(q~_l),f(rl~)) is positively 

oriented, (2) a point x E S  2 is in regions I or H i f f  the plane through the origin 

orthogonal to x does not interesect gk, and (3) a(f(r/~'+l), f(r/~'), f(r/~'_x))= 
7C - -  t 2  k .  

(ii) I f  v is o f  type 3 or 4 at k, then (1) ( f(q~+ ~), f(q~_ ~), f(q~) ) is negatively 
oriented, (2) a point x ~ S 2 is in regions III  or IV  if f  the plane through the origin 

orthogonal to x does not intersect gk, and (3) a(f(tl~+,), f(q~), f(q~_ ~)) = - ak. 

(iii) Define ilk(f, G(V)) as in w Then ilk(f, G(v)) = - ak + ek (no matter 
what type v is at k ). 

PROOF. We will consider the case where v is of type 1 at k; all other cases 
are similar. The lemma is trivial if everything is written out in spherical co- 
ordinates (p, 0, O). WLOG, assume that v is at the origin, and that gk is in the 
x - y  plane, and has endpoints a = (1, - ak/2, ~12) and b = (1, ak/2, n/2). 
Suppose that the angle between gk- ~ and gk is 2, and the angle between gk and 
gk+~ is/t. It is seen that f(r/~') = G(q*) = (I, 0, 0), 

f(tl~-z) --- G(q~'_,) = (1, - (ak + 7t)/2, 2), 
and 

f(tl~-i) = G(q~_~)= ( 1 , -  (ak + lt)/2, 2), 

the results in (i) now follow easily. 
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To show (iii) in case v is of type 1 at k, note that the definition of 

fig(f, G(v)) depends on which region G(v) is located in with respect to the 
geodesics containing (f(q~'_ 1), f(q~')) and (f(t/*), f(q~'+ 1)7, and on the orien- 
tation of (f(q~'+ 1), f(q~'-1), f(q~)). We have just seen that this orientation is 
positive, and that 

a( f (  tl~+ ,), f (  tl* ), f (  tl~-1) ) = n - ak. 

If  G(v) is in region I or II, then ek = 0 (since v is well-matched in this case), and 
thus by definition 

fig(f, G(v)) = a(f(q~+ ,), f(tl~), f(q?_ ,)) - rc = (n - ak) - rc 

_-- - - a k + 0 - - _ .  - - a g + e  k. 

If G(v) is in region III or IV, then eg = n (since v is missmatched in this case), 
and thus by definition 

f ig(f ,  G ( v ) ) = a ( f ( t l ~ + l ) , f ( t l ~ ) , f ( t l ~ - i ) ) = l r  - a t  = - - a k  + ek. [] 

LEMMA 7.2. Let K be a star normal simplexwise embedded surface in R ~, 
and let G be a combinatorial Gauss map. Let v ~ K  be a vertex, and let 
f :  Cp o So(v) be as above. Then wrap(v, K) = w(f ,  G(v)) + e(v, G). 

PROOF. Assume WLOG that v is the origin of R 2, and G(v) is the North 
pole of S 2. Consider the geodesic polygon C = gl t3 g2 (J �9 �9 �9 U gp. Label the 
vertices of this polygon (a~, a 2 , . . . ,  ap }, so that gk = (ag, ag +1). Note that the 
map f :  Cp ~ Sa~) is determined by C and the point G(v), and hence so are 
wrap(v, K), w( f ,  G(v)) and e(v, G). Now, we deform C by pushing its vertices 
"down," staying on or near their original longitudes, so that they all end up in 
the open Southern Hemisphere, and during the process the gk maintain their 
orientations with respect to the North Pole. We can chose this homotopy to be 
the composition of a sequence of smaller homotopies, such that in each of 
these smaller homotopies only one vertex ak moves, and one of the following 
three cases occurs: (1) a single arc(f(q~_ 1), f(t/~')) passes through G(v), but all 
pairs gg and gg +1 maintain the positivity or negativity of their intersection, (2) 

no arc(f(tl~_O,f(q?,')) passes through G(v), but the pair gk and gk+l which 
intersect in the moving vertex change the positivity or negativity of  their 
intersection, though all other pairs gk and gg+~ maintain the positivity or 
negativity of their intersection, or (3) no arc(f(t/~_ ~), f(q~')) passes through 
G(v), and all pairs gg and gg+l maintain the positivity or negativity of their 
intersection. Such a homotopy will not change wrap(v, K). w(f ,  G(v)) and 
e(v, G) certainly may change during the homotopy. We will indicate in the next 
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paragraph that whereas w(f, G(v)) and e(v, G) may each change, the sum 

w(f, G(v)) + e(v, G) remains constant. To conclude the proof, it remains to 
note that if C is entirely in the open Southern Hemisphere, then wrap(v, K) = 

w(f, G(v)), and e(v, G ) =  0. The former claim is straightforward, and the 
latter follows from part (2) in Lemma 7.1 (i) and (ii), which show that ek -- 0 

for all k. 

We need to show that the sum w(f, G(v)) + e(v, G) remains constant during 

any of the three types of  smaller homotopies described in the previous 

paragraph. Clearly neither w(f, G(v)) nor e(v, G) changes during a type (3) 

homotopy. In a type (2) homotopy, it is evident that w(f, G(v)) is constant. We 

omit the details here, but it is not hard to show that all the ek remain constant as 

well; the point is that for both arcs gk and gk+~ containing the moving vertex, 
the type of v changes from 1 or 2 to 3 or 4 (or vice versa), and the corresponding 

region in which g(v) is located changes from I or II to III or IV (or vice versa), 
thus not changing whether v is well-matched or missmatched at k and k + 1. 

Finally, for type (1) homotopies, we will show that when a geodesic containing 

an arc (f(r/~'_l),f(q~')) passes through G(v), the sum w(f,G(v))+e(v,G) 
remains constant. Call this geodesic t. By budging the homotopy slightly, we 

may assume that when G(v) crosses t, it does not do so at f(q~'_~) or f(r/*), v 

could be of any type at k - 1 and k; there are four cases, depending on whether 

v is of  type 1 or 2, or of  type 3 or 4, at each o fk  - 1 and k. We will examine the 
case where v is of  type 1 or 2 at k - 1, and is of  type 3 or 4 at k; the other three 
cases are similar. It is easier to think of G(v) crossing t, rather than vice versa. 
There are generically three types of crossings, labeled as a, b and c in Fig. 7.2. 

In situations a and c, G(v) does not cross the image of f ,  so that w(f, G(v)) is 
unchanged. In situation a, G(v) moves from region III to region II at k - 1 (so 

ek-~ decreases by n, being of type 1 or 2), and it moves from region IV to region 

I at k (so ek increases by n, being of type 3 or 4). Thus 

1 P 

remains unchanged in situation a. Similarly in situation c. Hence, in both 

situations a and c, w(f, G(v)) + e(v, G) remains unchanged. In situation b, 

G(v) crosses (f(q~'_ i), f(q~')) so that (G(v), f(q~_ ~), f(q~')) changes from being 
positively oriented to being negatively oriented (the other direction of crossing 

is similar). Hence w(f, G(v)) decreases by 2ft. However, G(v) moves from 

region I to region IV at k - 1 (so ek-l increases by n, being of  type 1 or 2), and 
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it moves from region IV to region I at k (so e k increases by 7t, being of type 3 or 
4). Thus e(v, G) increases by 2re in situation b, and hence w(f ,  G(v)) + e(v, G) 
remains unchanged. [] 

II 
a b IV ~" - , . .  c 

1 t . . . . .  l- f ' ( q ~ - O  " "- IV f '(r/~) 

II " .  I 

Fig. 7.2. 

PROOF OF THEOREM 2.3. Let {~/1 . . . . .  qp) be the 2-simplices of star(v, K) 
in order corresponding to the orientation of  K. To simplify our situation, we 
may assume t h a t f  is injective on each interval of Cv. Suppose conversely that 
f(t/*) =f(t/~'+l) for some k. Then the adjacent 2-simplices t/k and t/k+1 are 
parallel. We could then modify star(v, K) by replacing qk and/~k + 1 by a single 
2-simplex in the obvious way (such a 2-simplex might not "fit" in K anymore, 
but the curvature ev only depends on star(v, K)). Continuing in this way, we can 
eliminate all cases where f is not injective on an interval. It is not hard to see 
that this process would change neither A (v, K) nor wrap(v, K). Hence we may 
assume WLOG that f i s  already injective on each interval. 

L e t  o/k be the angle at v in 2-simplex ~k. For each k ~ { 1 . . . . .  p }, we can 
define ilk(f, G(v)) as in w Then 

ev=A(v, K) -- 2n[wrap(v, K) -- 1] 

= { k=, ~ ilk(f, G(V))+ 2nw(f ,  G(v) )} -  2n{w( f ,  G(v))+e(v, G ) - 1 )  

by Theorem 6.1 and Lemma 7.2 

= Y, ( - ak + ek) -- 2re(V, G) + 2~ by Lemma 7.1(iii) 
k ~ l  

= t o,t 

k = l  
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where the last line follows from the previous one because Zg_ l ~k  = 2he(v, G), 
by the definition ofe(v, G). [] 
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