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Abstract. In a 1967 paper, Banchoff described a theory of critical points and curvature for
polyhedra embedded in Euclidean space. For each convex cell complex K in Rn, and for each
linear map h : Rn ! R satisfying a simple generality criterion, he defined an index for each
vertex of K with respect to the map h, and showed that these indices satisfy two properties: (1)
for each map h, the sum of the indices at all the vertices of K equals vðKÞ; and (2) for each
vertex of K, the integral of the indices of the vertex with respect to all such linear maps equals
the standard polyhedral notion of curvature of K at the vertex. In a previous paper, the author
defined a different approach to curvature for arbitrary simplicial complexes, based upon a
more direct generalization of the angle defect. In the present paper we present an analog of
Banchoff ’s theory that works with our generalized angle defect.
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1. Introduction

In [1–3], Banchoff described a very nice theory of critical points and curvature for
polyhedra embedded in Euclidean space. The ‘Morse functions’ Banchoff used are

linear maps to lower dimensional Euclidean spaces (in particular, to one-dimensional
Euclidean spaces in [1], which is the case in which we are interested). Banchoff ’s

approach is a polyhedral version of the approach to critical points and curvature due
to Kuiper in [4].

In [1], Banchoff took a convex cell complex K in Rn, and for each linear map

h : Rn ! R satisfying a simple generality criterion, he defined an index for each vertex
of K with respect to the map h, and showed that these indices satisfy two main

properties: (1) the sum of the indices at all the vertices of K, with respect to a given
map h, equals vðKÞ; and (2) for each vertex of K, the integral of the indices of the

vertex with respect to all such linear maps equals the curvature of K at the vertex.
The type of polyhedral curvature used by Banchoff in [1] is a well known definition

of curvature of embedded polyhedra that generalizes the classical angle defect. For a
polyhedral surface M2 and a vertex v of M , the angle defect at v is dv ¼ 2p$

P
ai,

where the ai are the angles of the triangles containing v. This curvature function goes

back at least as far as Descartes (see [5]), and it satisfies all the standard properties
one would expect a curvature function on polyhedra to satisfy, including a
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polyhedral Gauss–Bonnet Theorem, which says
P

v dv ¼ 2pvðM2Þ, where the sum-
mation is over all the vertices of M2. The type of curvature used in [1] reduces to the

angle defect for a polyhedral surface, and it satisfies appropriately nice properties,
including a Gauss–Bonnet Theorem, in all dimensions. We will refer to this type of

curvature as ‘standard curvature’. This curvature has been studied widely, for
example, in [6–10] . This approach to generalizing the angle defect, which is based on
exterior angles, is simple to define, and it’s convergence properties has been well

studied. In standard curvature, all the curvature is concentrated at the vertices, as in
the case for the classical angle defect of polyhedral surfaces.

It turns out that standard curvature is not the only possible generalization of
the classical angle defect to arbitrary polyhedra in higher dimensions. In [11] we

defined a different approach to curvature for arbitrary simplicial complexes, which
we call stratified curvature. Our approach is based on the angle defect idea, but

extended to non-manifolds via a simple topological decomposition of each sim-
plicial complex. The angle defect (also known as the angle deficiency), has been
studied in the case of convex polytopes by a number of combinatorialists, for

example [12, 13]; more generally, for the wider study of angle sums in convex
polytopes and beyond, see for example [14, Chapter 14, 15–18]. In [19] a Gauss–

Bonnet type theorem (also referred to as Descartes’ Theorem) is proved for the
angle defect in polytopes with underlying spaces that are manifolds. The angle

defect for convex polytopes resembles the classical angle defect for polyhedral
surfaces much more closely than does standard curvature. In contrast to standard

curvature, which is concentrated at the vertices, the angle defect for convex
polytopes is found at each simplex of co-dimension at least 2 (it can be defined for

all simplices, but the angle defect at a co-dimension 0 or 1 simplex will always be
zero). The angle defect for convex polytopes satisfy various nice properties, such as
Gauss–Bonnet type theorem. One treatment of curvature of polyhedra that has

some of the advantages of all the approaches cited above is in [3], which uses
curvatures functions based on critical points (similarly to [1]), but this time using

projection maps Rn ! Rm, which leads to curvature functions related to the
Grassman angles of [13], and which are located at all simplices, and which directly

generalizes standard curvature; moreover, an angle defect type formula for cur-
vature is obtained using projection maps Rn ! Rn$1.

In [11, Section 4], we take the approach to curvature for arbitrary simplicial
complexes that is most directly comparable to the combinatorial authors listed
above. In [11, Section 4] we referred to this approach by the unfortunate name of

‘modified stratified curvature’, which really misses the point that in this approach we
are really still working with a pure angle defect. Hence, in the present paper, we will

use the better name of ‘generalized angle defect’ (which is also used in [20]). In
[11, Section 3] we defined a curvature function called ‘stratified curvature’, which

concentrated all the angle defects at the vertices of simplicial complexes; doing so
was not very natural, and will not be used in the present paper, though it was useful

in comparing our approach to standard curvature.
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A detailed comparison of standard curvature with both stratified curvature and
the generalized angle defect (which are just variants of each other) may be found in

[11, Section 4]. We mention here, however, that all these approaches satisfy some of
the basic properties that one would expect of curvature, such as being locally defined,

invariant under local isometries, and satisfying a Gauss–Bonnet type theorem
(though the Gauss–Bonnet Theorem for stratified curvature and the generalized
angle defect uses a modified Euler characteristic rather than the standard Euler

characteristic, as discussed in [11, Section 2]). One property where the different types
of curvature do not behave similarly is that standard curvature is identically zero for

any odd-dimensional polyhedral manifold (as stated without proof in [1, Section 5]),
but the analogous property does not hold for stratified curvature and the generalized

angle defect (as discussed in [20], where a modified version of generalized angle
defect is shown to satisfy this property).

The purpose of the present paper is to show that an analog of Banchoff ’s theory of
critical points for embedded polyhedra, as found in [1–2], can be obtained for the
generalized angle defect. For the sake of completeness, we mention here some of the

similarities and differences of our approach to that found in these two papers of
Banchoff, as well as his later [3], and the recent combinatorial Morse theory of

Forman, found in [21] and many other papers.
First, we note that in all three papers of Banchoff that have been cited, the

general setting is convex cell complexes, and in the work of Forman the most
general setting is CW complexes, whereas our approach is restricted to simplicial

complexes. As in Banchoff ’s work, our simplicial complexes are all embedded in
Euclidean space, as opposed to Forman ’s approach, in which abstract simplicial

complexes are used. As in [1, 2], the type of ‘Morse functions’ that we use will be
projection maps from Rm onto one-dimensional linear subspaces; each such pro-
jection map corresponds to a vector in Sm$1. We cannot use all such projection

maps, because of some degenerate cases, and so we need to rule out some ‘bad’ unit
vectors; in [1] some unit vectors are also ruled out, though our criteria for disal-

lowed unit vectors is different from [1]. In both our treatment and in [1], the set of
disallowed unit vectors has measure zero in Sm$1, and therefore can be safely ig-

nored for our purposes. In [3] projection maps from Rm to linear subspaces off all
dimensions are used; we do not treat such maps. In [21], where simplicial complexes

are not assumed to be embedded, the ‘Morse functions’ are not projections of Rm

onto linear subspaces, but are rather purely combinatorial functions, and as such
are rather different from the approach we take.

Suppose we are given a simplicial complex K in Rm, and a unit vector n 2 Sm$1.
We will define the index of each simplex of co-dimension at least 2 of K with respect

to the projection map hn from Rm onto the one-dimensional subspace generated by
n. In [1, 2], the index of a vertex of a simplicial complex with respect to n, denoted
aðv; nÞ in [1] and iðv; nÞ in [2], is defined in terms of the relative values under hn of the
vertices of the simplices containing v (the definition is formulated slightly differently

in the two papers, though the two approaches are equivalent). Banchoff ’s simple
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and elegant approach works very nicely with respect to standard curvature, because
that curvature is defined in terms of exterior angles, and Banchoff ’s definition of the

index of a vertex is naturally related to exterior angles. Our approach to curvature
uses interior angles, and, as a result, we cannot use Banchoff ’s simple definition of

the index, though we also use a definition that is expressed in terms of the values
under hn of certain vertices. The definition of our index, which will be given in
Equation (11) below, more closely resembles the definition Banchoff gives for his

index in [2, p. 478], which is for simplicial surfaces only, than it resembles the
definition he gives for his index in of [1, p. 246], which is for all simplicial com-

plexes. Our approach can be seen as an alternative generalization of the formulation
in [2] to arbitrary simplicial complexes. Also, we note that in [1] the index is defined

only at the vertices of a simplicial complex (which makes sense because standard
curvature is defined only at the vertices), whereas we define an index at every

simplex of co-dimension at least 2 (and we could define the index of simplices of
codimenion 1 or 0 to be zero); in [3] the index is also defined for all simplices, not
just vertices.

To make this paper self-contained, we start, in Section 2, with a brief review all
needed definitions and theorems from [11], leaving all the details to that paper. We

give all new definitions and statements of results in Section 3, and then give proofs in
Section 4.

2. Review of the Generalized Angle Defect

We give here a very brief summary of those definitions and statements of results
from [11] that we need; we refer the reader to the original paper for proofs and

further discussion. Throughout this paper, we will assume that all simplicial com-
plexes are finite, of dimension at least 2, and are in Euclidean space. (Whereas in [11]

we allow for a certain class of nonembedded simplicial complexes, here for conve-
nience we look only at actual simplicial complexes in Euclidean space.)

For the duration of this section, let K be an n-dimensional simplicial complex in
Euclidean space. If g and r are simplices in K, we write g % r to indicate that g is a
face of r. As usual, we let jKj denote the underlying space of K.

For the sake of convenience, we adopt the convention that we normalize all angles
so that the volume of the unit ðn$ 1Þ-sphere in ðn$ 1Þ-measure is 1 in all dimen-

sions. For any n-simplex rn in Euclidean space, and any i-face gi of rn, let aðgi; rnÞ
denote the solid angle in rn along gi, where by normalization such an angle is always

a number in [0, 1].

DEFINITION 2.1. For each nonnegative integer i, let Ti denote the open cone on i

points; alternatively, Ti is the space obtained by gluing together i copies of the half
open interval ½0; 1Þ at the point f0g in each. We take T0 to be a single point. See

Figure 1. Let Pn;i denote the space Pn;i ¼ Ti ' Rn$1. See Figure 2. If ( denotes the
cone point of Ti, we call f(g' Rn$1 ) Pn;i the apex set of Ti.
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Observe that Pn;i is not homeomorphic to Pn;j when i 6¼ j. For our next definition,
and from now on, we will need to think of simplices as open (and hence disjoint).

DEFINITION 2.2. Let K be an n-dimensional simplicial complex. For each non-
negative integer r such that r 6¼ 2, we define the subset Cn

r ðKÞ of jKj by

Cn
r ðKÞ ¼ fx 2 jKj j x has a neighborhood homeomorphic to Pn;r, where the homeo-

morphism takes x to the apex set of Pn;rg.

Define

Cn
2ðKÞ ¼ jKj$

[

r 6¼2

Cn
r ðKÞ:

EXAMPLE 2.3. Consider the two-dimensional simplicial complex K shown in

Figure 3. The set Cn
2ðKÞ consists of the interiors of the three triangles together with

the vertex w. The set Cn
1ðKÞ is the union of the boundaries of the triangles with w

removed. Note that Cn
r ðKÞ ¼ ; for r 6¼ 1; 2.

Remark 2.4. (1) The sets Cn
r ðKÞ are well defined, because each x 2 jKj can have

a neighborhood homeomorphic to Pn;r (where the homeomorphism takes x to the
apex set of Pn;r) for at most one number r 6¼ 2. Moreover, the sets Cn

r ðKÞ are well

defined up to homeomorphism of jKj.
(2) Because K is a finite simplicial complex, there is some positive integer P such

that Cn
r ðKÞ ¼ ; for all r > P .

(3) The sets Cn
r ðKÞ are disjoint, and cover jKj. For each r 6¼ 2, the set Cn

r ðKÞ is an
ðn$ 1Þ-manifold without boundary. Moreover, each set Cn

r ðKÞ is the union of (open)

simplices of K, since all points in any simplex of K have homeomorphic neighbor-
hoods in jKj (if the neighborhoods are taken small enough). If r 2 K, then

r ) Cn
r ðKÞ for some unique integer r.

T0 T1 T2 T3

Figure 1.

Figure 2.
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DEFINITION 2.5. Let K be an n-dimensional simplicial complex. For each simplex
r 2 K, we define the number TnðrÞ by TnðrÞ ¼ r=2, where r 2 Cn

r ðKÞ for some

unique integer r.

The following definition was originally given in [11, Section 4], though here we use
the better name given given below (and also used in [20], as discussed in Section 1).

In contrast to standard curvature, which in all dimensions is concentrated at the
vertices (see, for example, [1, 8]), our approach has curvature at all simplices (though

the nonzero curvature is always at simplices of co-dimension at least 2), similarly to
the combinatorial approach (see for example [12, 13]), as well as the geometric

approach of [3].

DEFINITION 2.6. Let K be an n-dimensional simplicial complex, and let gi be an
i-simplex of K, where 0OiOn$ 2. The generalized angle defect at gi is the number

DnðgiÞ defined by DnðgiÞ ¼ TnðgiÞ $
P

rn*gi aðgi; rnÞ, where the summation is over all
n-simplices rn which have gi as a face.

EXAMPLE 2.7. We continue Example 2.3. Assume that all three triangles in K are
equilateral. By normalization of angles, each angle in an equilateral triangle is 1=6.
Then

D2ðwÞ ¼ T2ðwÞ $
X

r2*w

aðw;r2Þ ¼ 1$ 3 + 1
6
¼ 1

2
;

and

D2ðaÞ ¼ T2ðaÞ $
X

r2*a

aða; r2Þ ¼ 1

2
$ 1

6
¼ 1

3
:

Clearly the generalized angle defect at each of b, c, d, e, f is the same as at a.

In the Gauss–Bonnet type theorem proved in [11], rather than using the standard

Euler characteristic, we used the following variant of the Euler characteristic. We will
use this new characteristic in the present paper as well.

w

c d

a

b

f

e

K

Figure 3.
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DEFINITION 2.8. Let K be an n-dimensional simplicial complex in Rm. The number

vsðKÞ is defined by

vsðKÞ ¼
X

g2K
TnðgÞð$1Þdim g:

The above definition is a particular case of the weighted Euler characteristics dis-

cussed in [22, 23]. In the notation of those two papers, the symbol vsðKÞ would be
written vðK; T Þ, but we will not need this latter notation, because we will never use a

different weight on the simplices.

EXAMPLE 2.9. We continue Example 2.3. Clearly vðKÞ ¼ 1, but

vsðKÞ ¼ 3 + 1$ 9 + 1
2
þ 6 + 1

2
þ 1 + 1 ¼ 5

2
:

Observe that the sum of the generalized angle defects at the vertices of K, as com-

puted in Example 2.7, equals 5/2, as expected by the Gauss–Bonnet theorem proved
in [11].

As discussed in [11, Section 2], it can be seen that vsðKÞ is a homeomorphism

invariant of jKj, but it is not a homotopy type invariant.

3. Stratified Morse Index

We will use the following notation. If gi is a simplex in Rm, we let V ðgiÞ denote the

i-dimensional vector subspace of Rm that is parallel to the i-plane spanned by gi. We
can think of V ðgiÞ as a copy of Ri, we can think of Si$1 as the set of unit vectors in

V ðgiÞ, and we can think of gi as sitting in V ðgiÞ by translation.
If T is a vector subspace of Rm, we let hT : Rm ! T denote orthogonal projection

onto T . Let n be a vector in Rm. For convenience we will write hn instead of hV ðnÞ. As
in [1], we will think of V ðnÞ as a copy of the real number line, and can therefore think

of hnðxÞ for each x 2 Rm as a real number, rather than a vector. If n is a unit vector,
then clearly hnðxÞ ¼ x + n for all x 2 Rm.

If K is an n-dimensional simplicial complex in Rm, then the type of ‘‘Morse func-
tions’’ onK that we use will be projectionmaps of the form hn : Rm ! V ðnÞ, for almost
all unit vectors n 2 Sm$1. We cannot use the projection map hn for all unit vectors n,
because of some degenerate cases, and so we need to rule out some ‘‘bad’’ unit vectors,
as done in the following definition. The set of disallowed unit vectors has measure zero

in the unit sphere.

DEFINITION 3.1. Let K be an n-dimensional simplicial complex in Rm, and let

n 2 Sm$1. We say that n is an allowable vector with respect to K if the following
criteria hold. Let rn be any n-simplex of K. For convenience let T ¼ VðrnÞ. Then we

require that hTðnÞ is not the zero vector, and that hTðnÞ is not contained in Vðgn$1Þ
for any ðn$ 1Þ-face gn$1 of rn.
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LEMMA 3.2. Let K be an n-dimensional simplicial complex in Rm. Then the set of

allowable vectors in Sm$1 with respect to K is an open dense subset of Sm$1, and the set
of non-allowable vectors in Sm$1 with respect to K has measure zero.

Proof. Let rn be an n-simplex of K and let gn$1 be an ðn$ 1Þ-face of rn. Let
Uðrn; gn$1Þ ¼ V ðrnÞ? - V ðgn$1Þ. It is simple to see that Uðrn; gn$1Þ is an ðm$ 1Þ-
dimensional vector subspace of Rm, and hence Uðrn; gn$1Þ \ Sm$1 is a closed
subset of measure zero of Sm$1. The set of all non-allowable vectors in Sm$1 with

respect to K is precisely the union of all the sets Uðrn; gn$1Þ \ Sm$1. The result
follows immediately. (

The following definition makes sense because of the definition of allowable vectors.

DEFINITION 3.3. Let K be an n-dimensional simplicial complex in Rm, let rn be an
n-simplex of K, and let n 2 Sm$1 be an allowable vector with respect to K. For
convenience let T ¼ VðrnÞ. We then define nrn to be the unit vector in T defined by

nrn ¼
hT ðnÞ

khT ðnÞk
:

Remark 3.4. Let K be an n-dimensional simplicial complex in Rm, let rn be an n-
simplex of K, and let n 2 Sm$1 be an allowable vector with respect to K. We observe

that nrn is an allowable vector in Sn$1 with respect to rn (thought of as sitting in
VðrnÞ).

We now want to define the index of each simplex of co-dimension at least 2 of a
simplicial complex, with respect to a projection map of the form hn, where n is an

allowable vector. Analogously to [1, 2], the index is expressed in terms of the values
under hn of certain vertices. Our index is given in Equation (11), though we start with

some preliminaries.

DEFINITION 3.5. Let K be an n-dimensional simplicial complex in Rm, let

rn ¼ ha0; . . . ; an$1; bi be an n-simplex of K, let sn$1 ¼ ha0; . . . ; an$1i, and let n 2 Sm$1

be an allowable vector with respect to K. We use the abbreviations xi ¼ ai $ a0 for

i 2 f1; . . . ; n$ 1g, and y ¼ b$ a0, and n0 ¼ nrn . We define the number
tðsn$1; rn;Rm; nÞ to be 1 if

det

x1 + x1 + + + xn$1 + x1 hnðx1Þ
..
. ..

. ..
.

x1 + xn$1 + + + xn$1 + xn$1 hnðxn$1Þ
x1 + y + + + xn$1 + y hnðyÞ

0

BBB@

1

CCCA > 0; ð1Þ

and we define tðsn$1; rn;Rm; nÞ to be 0 otherwise.
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The following lemma gives us an intuitive picture of what the above definition
means. We use the following notation: if x is a real number, let sgn x be $1, 0, 1,

respectively if x is negative, zero or positive, respectively.

LEMMA 3.6. Let K be an n-dimensional simplicial complex in Rm, let

rn ¼ ha0; . . . ; an$1; bi be an n-simplex of K, let sn$1 ¼ ha0; . . . ; an$1i, and let n 2 Sm$1

be an allowable vector with respect to K. We use the abbreviations xi ¼ ai $ a0 for
i 2 f1; . . . ; n$ 1g, and y ¼ b$ a0, and n0 ¼ nrn . By translation we can think of rn as

sitting in VðrnÞ. The following are equivalent.

(1) tðsn$1; rn;Rm; nÞ ¼ 1.
(2) sgn detð x1j + + + jxn$1jy Þ ¼ sgn det x1j +++j xn$1jn0

! "
,

where we think of x1; . . . ; xn$1; y; n0 as column vectors in Rn.

(3) If t is a point in the relative interior of sn$1, and if s is a point in the relative interior
of rn such that the vector s$ t is orthogonal to V ðsn$1Þ, then hnðsÞ > hnðtÞ.

Proof. We can translate all of Rm so that a0 is taken to the origin; hence we will

think of a0 as equaling 0.
Using the basis fx1; . . . ; xn$1; yg for V ðrnÞ, we can write

n0 ¼ c1x1 þ + + + þ cn$1xn$1 þ py; ð2Þ

for some real numbers c1; . . . ; cn$1; p. By the definition of n being an allowable vector,

it follows that p 6¼ 0. We will show that each of Conditions (1)–(3) holds iff p > 0, and
that will prove that the three conditions are equivalent.

To show that Condition (1) holds iff p > 0, we solve Equation (2) for p by taking
the inner product of it with each of x1; . . . ; xn$1; y, and then solving the resulting

system of linear equations using Cramer ’s rule, to obtain

p ¼

det

x1 + x1 + + + xn$1 + x1 n0 + x1
..
. ..

. ..
.

x1 + xn$1 + + + xn$1 + xn$1 n0 + xn$1

x1 + y + + + xn$1 + y n0 + y

0

BBB@

1

CCCA

det

x1 + x1 + + + xn$1 + x1 y + x1
..
. ..

. ..
.

x1 + xn$1 + + + xn$1 + xn$1 y + xn$1

x1 + y + + + xn$1 + y y + y

0

BBB@

1

CCCA

: ð3Þ

Next, observe that the matrix in the denominator of the right-hand side of Equation
(3) can be written as

x1j +++j xn$1jyð ÞT x1j +++j xn$1 j yð Þ: ð4Þ

It follows that the denominator in the right hand side of Equation (3) is always
positive. We deduce that p > 0 iff the numerator in Equation (3) is positive. As seen
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above, we know that n ¼ an0 þ w, where a is some positive constant, and where w is a
vector that is orthogonal to V ðrnÞ, and it follows that hnðvÞ ¼ v + n ¼ aðv + n0Þ for any
vector v 2 V ðrnÞ. It is then straightforward to deduce that the numerator in the right-
hand side of Equation (3) is positive iff Equation (1) holds. It follows that Condition

(1) holds iff p > 0.
To show that Condition (2) holds iff p > 0, we use Equation (2) and basic

properties of determinants, to see that

det x1j +++j xn$1 j n0
! "

¼ p det x1j + + + jxn$1 j yð Þ: ð5Þ

Equation (5) clearly shows that Condition (2) holds iff p > 0.
We now show that Condition (3) holds iff p > 0. Let t be a point in the relative

interior of sn$1, and let s is a point in the relative interior of rn such that the vector

s$ t is orthogonal to V ðsn$1Þ. We need to show that hnðsÞ > hnðtÞ iff p > 0. Let
z ¼ s$ t. It will suffice to show that hnðzÞ > 0 iff p > 0. We observe that n ¼ an0 þ w,
where a is some positive constant, and where w is a vector that is orthogonal to
V ðrnÞ. Because z 2 V ðrnÞ, it follows that hnðzÞ ¼ z + n ¼ aðz + n0Þ ¼ ahn0ðzÞ. Hence, it

will suffice to show that hn0ðzÞ > 0 iff p > 0.
Because s is a point in the relative interior of rn, it follows (using barycentric

coordinates) that

s ¼ d0a0 þ + + + þ dn$1an$1 þ eb; ð6Þ

for some real numbers d0; . . . ; dn$1; e, where d0; . . . ; dn$1; e > 0. Similarly, Because t is
a point in the relative interior of V ðsn$1Þ, it follows that

t ¼ f0a0 þ + + + þ fn$1 an$1; ð7Þ

for some real numbers f0; . . . ; fn$1. Recall that we are assuming that a0 ¼ 0, and

hence xi ¼ ai for i 2 f1; . . . ; n$ 1g, and y ¼ b. Combining Equations (6) and (7) we
see that

z ¼ ðd1 $ f1Þx1 þ + + + þ ðdn$1 $ fn$1Þxn$1 þ ey: ð8Þ

Next, using the basis fx1; . . . ; xn$1; zg for V ðrnÞ, we can write

n0 ¼ k1x1 þ + + + þ kn$1 xn$1 þ rz; ð9Þ

for some real numbers k1; . . . ; kn$1; r, where r 6¼ 0. Because z is orthogonal to
x1; . . . ; xn$1, it follows that z + n0 ¼ rjzj2. It follows that z + n0 > 0 iff r > 0, which is

equivalent to saying that hn0ðzÞ > 0 iff r > 0. Next, we substitute Equation (8) into (9)
and rearrange to obtain

n0 ¼ u1x1 þ + + + þ un$1xn$1 þ rey; ð10Þ

for appropriate real numbers u1; . . . ; un$1. Comparing Equations (10) and (2), we

deduce that re ¼ p. Because e > 0, we see that p > 0 iff r > 0. Having already seen
that hn0ðzÞ > 0 iff r > 0, it follows that hn0ðzÞ > 0 iff p > 0, which is what we needed to

show regarding Condition (3). (
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Remark 3.7. We see from the definition of tðsn$1; rn;Rm; nÞ that

tðsn$1; rn;Rm; nÞ ¼ 1 iff nrn points across sn$1 in the direction of rn.

Our next definition is as follows.

DEFINITION 3.8. Let K be an n-dimensional simplicial complex in Rm, let rn be an
n-simplex of K, let gi be an i-face of rn with 0OiOn$ 2 and let n 2 Sm$1 be an
allowable vector with respect to K. We define the number gðgi; rn;Rm; nÞ as follows.
The simplex gi is the intersection of precisely n$ i ðn$ 1Þ-faces of rn, say s1; . . . ; sn$i.

Then gðgi; rn;Rm; nÞ is defined by

gðgi; rn;Rm; nÞ ¼
Yn$i

k¼1

tðsk; rn;Rm; nÞ þ
Yn$i

k¼1

tðsk; rn;Rm;$nÞ:

Remark 3.9. It is seen from the above definition that gðgi; rn;Rm; nÞ ¼ 1 iff

tðsk; rn;Rm; nÞ ¼ 1 for all k 2 f1; . . . ; n$ ig, or if tðsk; rn;Rm;$nÞ ¼ 1 for all
k 2 f1; . . . ; n$ ig; and gðgi; rn;Rm; nÞ ¼ 0 otherwise. This means is that
gðgi; rn;Rm; nÞ ¼ 1 iff either nrn or $nrn points inside the angle in rn along gi.

Finally, we can now give the definition of the index of simplices with respect to a

projection map.

DEFINITION 3.10. Let K be an n-dimensional simplicial complex in Rm, let gi be an
i-simplex of K with 0OiOn$ 2, and let n 2 Sm$1 be an allowable vector with respect
to K. The index of gi with respect to n is defined to be the number iðgi; nÞ given by

iðgi; nÞ ¼ TnðgiÞ $
1

2

X

rn*gi
gðgi; rn;Rm; nÞ; ð11Þ

where the summation is over all n-simplices rn which have gi as a face.

EXAMPLE 3.11. We continue Example 2.3. Let n be as shown in Figure 4, where
we have assumed that the vertex w is at the origin. It is seen that

gða; r1;R2; nÞ ¼ gðd; r2;R2; nÞ ¼ gðe; r3;R2; nÞ ¼ 1, and that all other relevant
numbers of the form gðx; ri;R2; nÞ are 0. Hence, we compute

iðw; nÞ ¼ T2ðwÞ $
1

2

X3

i¼1

gðw; ri;R2; nÞ ¼ 1$ 1
2 + 0 ¼ 1;

and

iða; nÞ ¼ T2ðaÞ $ 1
2 gða; r1;R

2; nÞ ¼ 1
2 $

1
2 + 1 ¼ 0;

it is similarly seen that

iðb; nÞ ¼ iðc; nÞ ¼ iðf ; nÞ ¼ 1
2 and iðd; nÞ ¼ iðe; nÞ ¼ 0:
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Observe that the sum of the indices at the vertices of K is 5=2, which equals vsðKÞ, as
computed in Example 2.9. We will see in Theorem 3.12 below that this equality is not
coincidental.

By way of comparison, Banchoff ’s index at the vertices of K (as defined in
[1, Section 1]) is index 1 at the vertex a, and index 0 at all the other vertices. The sum

of Banchoff ’s indices at the vertices of K is 1, which equals vðKÞ, as expected. (In the
case of two-dimensional simplicial complexes it is plausible to compare Banchoff ’s

index at a vertex with respect to a projection map with the index as we have defined it
with respect to the same projection map; the above example shows that the two

different types of indices are in general different. In the case of higher dimensional
simplicial complexes, it is difficult to compare the two types of indices, because
Banchoff ’s is defined only at the vertices, whereas our index is defined at all simplices

up to co-dimension 2.)

We can now state our main results; their proofs will be given in Section 4. Our first

theorem concerns the sum of the indices of the simplices of co-dimension at least 2 of
a simplicial complex. This theorem is the analog of Theorem 1 in [1, p. 247], which he

calls the Critical Point Theorem.

THEOREM 3.12. Let K be an n-dimensional simplicial complex in Rm, and let
n 2 Sm$1 be an allowable vector with respect to K. Then

X

gi2K
0OiOn$2

ð$1Þiiðgi; nÞ ¼ vsðKÞ:

Our second theorem is the analog of Theorem 3 in [1, p. 251], which he calls the

Theorema Egregium. Let dxm$1 denote the ordinary volume element on Sm$1. Ob-
serve that if K is an n-dimensional simplicial complex in Rm, and if gi is an i-simplex

of K with 0OiOn$ 2, then by Lemma 3.2, the set of n 2 Sm$1 for which iðgi; nÞ is
defined is an open dense subset of Sm$1. Hence, it is possible to integrate iðgi; nÞ over
Sm$1. Recall that we adopt the convention that all angles are normalized so that the
volume of the unit ðn$ 1Þ-sphere in ðn$ 1Þ-measure is 1 in all dimensions.

w

c d

a

b

f

e

K

1 3

2

Figure 4.
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THEOREM 3.13. Let K be an n-dimensional simplicial complex in Rm, and let gi be an
i-simplex of K with 0OiOn$ 2. Then

Z

Sm$1

iðgi; nÞ dxm$1 ¼ DnðgiÞ:

4. Proofs

We start with the proof of Theorem 3.12, the essence of which is the following

lemma. The proof of this lemma uses the main idea of the proof of Gram’s Theorem
given in [24, pp. 22–24]; Hopf attributes his proof to Poincaré. See [14, Section 14.4,

15] for more about Gram’s Theorem and its generalization to convex polytopes.
Note that [16] refers to this result at the Gram–Euler Theorem, and [25, p. 174] refers

to it as the Brianchon–Gram Theorem (Hopf does not give it any name).

LEMMA 4.1. Let K be an n-dimensional simplicial complex in Rm, let rn be an

n-simplex of K, and let n 2 Sm$1 be an allowable vector with respect to K. Then
X

gi%rn
0OiOn$2

ð$1Þigðgi; rn;Rm; nÞ ¼ ð$1Þnðn$ 1Þ:

Proof. We can think of rn as sitting in V ðrnÞ by translation, we can think of V ðrnÞ
as identified with Rn, and we can think of rn as an n-dimensional simplicial complex.
It is straightforward to see that for each ðn$ 1Þ-face sn$1 of rn, we have

tðsn$1; rn;Rm; nÞ ¼ tðsn$1;rn;Rn; nrnÞ. It follows that for each i-face gi of rn with
0OiOn$ 2, we have gðgi; rn;Rm; nÞ ¼ gðgi; rn;Rn; nrnÞ. It therefore suffices to show

that
X

gi%rn
0OiOn$2

ð$1Þigðgi; rn;Rn; nrnÞ ¼ ð$1Þnðn$ 1Þ: ð12Þ

Hence, we will work entirely in Rn for the rest of the proof.

As stated in Remark 3.4, we know that nrn is an allowable vector in Sn$1 with
respect to rn. Let s0; . . . ; sn denote the ðn$ 1Þ-faces of rn. We use the abbreviations

n0 ¼ nrn , and Fiðn0Þ ¼ tðsi; rn;Rn; xÞ, where i 2 f0; . . . ; ng and x 2 Sn$1.
It is trivial to see that for each i 2 f0; . . . ; ng, we have

Fiðn0Þ þ Fið$n0Þ ¼ 1: ð13Þ

Now, suppose that p > 1, and that 0Oi1 < i2 < + + + < ipOn. Observe that
si1 \ + + + \ sip is an ðn$ pÞ-face of rn. Then, by the definition of
gðsi1 \ + + + \ sip ; r

n;Rn; n0Þ, we have

Fi1ðn
0ÞFi2ðn

0Þ + + + Fipðn
0Þ þ Fi1ð$n0ÞFi2ð$n0Þ + + + Fipð$n0Þ

¼ gðsi1 \ + + + \ sip ; r
n;Rn; n0Þ: ð14Þ
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As noted in [24, p. 24], it is seen that

Yn

i¼0

Fiðn0Þ ¼ 0 and
Yn

i¼0

ð1$ Fiðn0ÞÞ ¼ 0: ð15Þ

By expanding the second part of Equation (15), and then using the first part of the
equation, we deduce that

1$
X

0OiOn

Fiðn0Þ þ
X

0Oi<jOn

Fiðn0ÞFjðn0Þ $ + + +

þ ð$1Þn
X

0Oi1<i2<+++<inOn

Fi1ðn
0ÞFi2ðn

0Þ + + + Finðn
0Þ ¼ 0: ð16Þ

We can substitute $n0 for n0 into Equation (16), and then add the resulting equation

to Equation (16), which yields

2$
X

0OiOn

½Fiðn0ÞþFið$n0Þ.þ
X

0Oi<jOn

½Fiðn0ÞFjðn0ÞþFið$n0ÞFjð$n0Þ.$ ++ +

þð$1Þn
X

0Oi1<i2<+++<inOn

½Fi1ðn
0ÞFi2ðn

0Þ + + +Finðn
0ÞþFi1ð$n0ÞFi2ð$n0Þ + + +Finð$n0Þ.

¼ 0: ð17Þ

Next, substituting Equations (13) and (14) into Equation (17), we obtain

2$
X

0OiOn

1þ
X

0Oi<jOn

gðsi \ sj; rn;Rn; n0Þ $ + + +

þ ð$1Þn
X

0Oi1<i2<+++<inOn

gðsi1 \ + + + \ sin ; r
n;Rn; n0Þ ¼ 0: ð18Þ

For each p > 1, we observe that the collection of all intersections of the form
si1 \ + + + \ sip precisely equals the collection of all ðn$ pÞ-faces of rn. Hence, Equa-

tion (18) can be rewritten as

2$ðnþ 1Þþ
X

gn$2%rn
gðgn$2;rn;Rn;n0Þ$ + + +þ ð$1Þn

X

g0%rn
gðg0;rn;Rn;n0Þ ¼ 0; ð19Þ

where the each of the summations is over all the faces of rn of the appropriate
dimension. Rearranging Equation (19) yields Equation (12), which is what we nee-

ded to show. (

Proof of Theorem 3.12. We will need to use the following equation, which was
given in [11, p. 387]:

X

rn2K

ð$1Þnðn$ 1Þ
2

¼ $
X

rn$12K
Tnðrn$1Þð$1Þdim rn$1

$
X

rn2K
TnðrnÞð$1Þdim rn : ð20Þ
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We now compute
X

gi2K
0OiOn$2

ð$1Þiiðgi;nÞ¼
X

gi2K
0OiOn$2

ð$1Þi TnðgiÞ$
1

2

X

rn*gi
gðgi;rn;Rm;nÞ

" #

¼
X

gi2K
0OiOn$2

ð$1ÞiTnðgiÞ$
X

gi2K
0OiOn$2

ð$1Þi 1
2

X

rn*gi
gðgi;rn;Rm;nÞ

¼
X

gi2K
0OiOn$2

TnðgiÞð$1Þdim gi $1

2

X

rn2K

X

gi%rn
0OiOn$2

ð$1Þigðgi;rn;Rm;nÞ

¼
X

gi2K
0OiOn$2

TnðgiÞð$1Þdim gi $1

2

X

rn2K
ð$1Þnðn$1Þ

using Lemma 4.1

¼
X

gi2K
0OiOn$2

TnðgiÞð$1Þdim gi þ
X

rn$12K
Tnðrn$1Þð$1Þdimrn$1

þ

þ
X

rn2K
TnðrnÞð$1Þdimrn

using Equation (20)

¼
X

g2K
TnðgÞð$1Þdim g ¼ vsðKÞ;

where the last equality is by the definition of vsðKÞ. (

We now turn to the Proof of Theorem 3.13. We start with the following lemma,

which relates gðgi; rn;Rm; nÞ to the interior angle of rn along gi.

LEMMA 4.2. Let K be an n-dimensional simplicial complex in Rm, let rn be an n-

simplex of K, and let gi be an i-face of rn with 0OiOn$ 2. Then

1

2

Z

Sm$1

gðgi; rn;Rm; nÞ dxm$1 ¼ aðgi; rnÞ:

Proof. We can think of rn as sitting in V ðrnÞ by translation, and we can think of
V ðrnÞ as identified with Rn. Additionally, we can think of rn as an n-dimensional

simplicial complex.
Let f 2 Sn$1 be an allowable vector with respect to rn. The simplex gi is in the

intersection of precisely n$ i ðn$ 1Þ-faces of rn, say s1; . . . ; sn$i. As stated in Re-
mark 3.9, we see that gðgi; rn;Rn; fÞ ¼ 1 iff either f or $f points inside the angle in rn

along gi. It now follows easily that

1

2

Z

Sn$1

gðgi; rn;Rn; fÞ dxn$1 ¼ aðgi; rnÞ: ð21Þ

Next, we assert thatZ

Sm$1

gðgi; rn;Rm; nÞ dxm$1 ¼
Z

Sn$1

gðgi; rn;Rn; fÞ dxn$1: ð22Þ
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The lemma follows by combining Equations (21) and (22). Equation (22) can be
proved similarly to the argument given in the proof of Lemma 2 of [1]; we omit the

details. (We note that Equation (22) is true as stated only because we are assuming
that the volume of the unit ðk $ 1Þ-sphere in ðk $ 1Þ-measure is 1 in all dimensions;

otherwise we would need factors consisting of the volumes of appropriate unit
spheres.) (

Proof of Theorem 3.13. First, observe that we have
Z

Sm$1

dxm$1 ¼ 1; ð23Þ

given our normalization of the volumes of unit spheres.
We then computeZ

Sm$1

iðgi;nÞ dxm$1 ¼

¼
Z

Sm$1

TnðgiÞ$
1

2

X

rn*gi
gðgi;rn;Rm;nÞ

" #

dxm$1

¼ TnðgiÞ
Z

Sm$1

dxm$1$
X

rn*gi

1

2

Z

Sm$1

gðgi;rn;Rm;nÞdxm$1

¼ TnðgiÞ$
X

rn*gi
aðgi;rnÞ ¼DnðgiÞ;

where the last equality uses Equation (23), Lemma 4.2 and the definition of

DnðgiÞ. (
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