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Mod 2 degree and a generalized No Retraction Theorem

Ethan D. Bloch∗1

1 Bard College, Annandale-on-Hudson, NY 12504, U.S.A.

Received 7 August 2003, revised 24 February 2004, accepted 18 June 2004
Published online 9 March 2006

Key words No Retraction Theorem, degree of a map, Sperner’s Lemma
MSC (2000) Primary: 55M20; Secondary: 55M25, 54H25

We provide elementary proofs of generalized versions of the No Retraction Theorem and Sperner’s Lemma,
and a simple definition of mod 2 degree of certain maps.
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1 Introduction

Three well-known equivalent theorems are the Brouwer Fixed Point Theorem (BFPT), the No Retraction The-
orem (NRT) and Sperner’s Lemma (SL). The equivalence of the first two is a standard result in topology. The
BFPT can be derived directly from SL, which is often proved combinatorially; it is also known that the BFPT
implies SL. See [16] for discussion and references of the interrelations of these theorems.

These three theorems have been studied extensively. SL has been generalized in a variety of ways; see, among
many references, [1], [3] and [4]. Some authors have related these combinatorial ideas to the notion of topological
degree; see [11], [12] and [14]. For a thorough discussion of generalizations of the BFPT, see [2].

The NRT has many well-known proofs, the most common being via algebraic topology. A well-known ele-
mentary proof of the NRT, not using algebraic topology, is [8]; a variant on this proof is found in [9]. Another
well-known proof of the NRT is given in [6]. This proof is very short and clear, and also avoids algebraic topology,
though it uses the Simplicial Approximation Theorem, which makes it not quite as simple as it at first appears.
Moreover, it has recently been pointed out in [7] that the standard Simplicial Approximation Theorem does not
suffice for [6], and that the Relative Simplicial Approximation Theorem of [17] is needed, thereby diminishing
somewhat the elementary nature of this proof of the NRT. Although there are many proofs of the NRT, it is not
as widely known that the NRT can be generalized quite simply to a broader class of topological spaces than just
balls.

In this note we bring together a number of these ideas, and give simple proofs of two generalizations of the
NRT, as well as a generalization of SL. In order to state our results, we need the following standard definition.

Definition 1.1 Let K be a finite n-dimensional simplicial complex. The boundary of K , denoted BdK , is
the collection of all (n− 1)-simplices of K that are contained in an odd number of n-simplices, together with all
the faces of these (n − 1)-simplices.

Observe that Bd K is a (possibly empty) (n − 1)-dimensional subcomplex of K . It can be verified that the
boundary of a simplicial complex is instrinsic to the underlying space of the simplicial complex (we omit the
details), and we can therefore make the following definition.

Definition 1.2 Let X be a topological space that is homeomorphic to the underlying space of a finite simplicial
complex. Let K be a finite simplicial complex, and let h : |K| → X be a homeomorphism. The boundary of X ,
denoted ∂X , is defined by ∂X = h(|Bd K|).

Our first generalization of the NRT is as follows.
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Theorem 1.3 Let X be a topological space that is homeomorphic to the underlying space of a finite simplicial
complex. Then there is no continuous map r : X → ∂X such that r(x) = x for all x ∈ ∂X .

The only other place that the author has found this version of the generalized NRT is in [13]; the proof in
that paper is short and clever, and it avoids both algebraic topology and the Simplicial Approximation Theorem,
though it is not entirely transparent (relying on induction over the dimension of the spaces involved). Two
slightly less general version of Theorem 1.3 are found in the following references: In [10] there is a proof of the
generalized NRT restricted to simplicial complexes that have boundary a sphere, with a different proof than in
[13], but one that has the same merits and drawbacks; in [15, pp. 150–151] there is the outline of a proof (given
as exercises) of the generalized NRT restricted to pseudomanifolds with boundary, though here the proof uses
the Simplicial Approximation Theorem. Our proof of Theorem 1.3 is, we believe, even more elementary and
transparent than the proofs given in [10] and [13], avoiding their uses of induction.

Our second generalization of the NRT, given in Theorem 1.4, is not as straightforwardly analogous to the
classical NRT as our first generalization, but it does indeed generalize the classical NRT, and we can prove it
with very little extra effort (though this proof uses the Simplicial Approximation Theorem). In this case we have
slightly less general spaces, but more general maps, than in Theorem 1.3. Theorem 1.4 is not found in [10], [13]
or [15, pp. 150–151].

Theorem 1.4 Let X , respectively Y , be a topological space that is homeomorphic to the underlying space
of a finite n-dimensional, respectively (n − 1)-dimensional, simplicial complex. Suppose that ∂X and Y are
(n− 1)-manifolds, with Y connected. Let W be a component of X . Then there is no continuous map f : X → Y
such that deg f |∂W ≡ 1 (mod 2).

Our generalization of Sperner’s Lemma is as follows. If f : |K| →| L| is a simplicial map, and if σ is a
simplex of L, then we let νn(f, σ) denote the number of n-simplices in K that are mapped onto σ by f .

Theorem 1.5 Let K be a finite n-dimensional simplicial complex, let P be a finite n-pseudomanifold with
boundary, and let f : |K| →| P | be a simplicial map such that f(|Bd K|) ⊆ |Bd P |. Let σ be an (n−1)-simplex
of Bd P , and let τ be an n-simplex of P . Then νn(f, τ) ≡ νn−1(f ||Bd K|, σ) (mod 2).

The tools in our proofs of Theorems 1.3 and 1.5 involve nothing more technical than simplicial complexes,
subdivision and simplicial maps. The NRT will be seen to be an issue of parity. The key to our proofs is the
following very simple result from graph theory, the proof of which is left to the reader (see most any introductory
text on graph theory for further details, for example [5, p. 14]). This lemma could almost be said to be the essence
of the NRT.

Lemma 1.6 Let G be a graph with no loops. The number of vertices of G that are contained in odd numbers
of edges is even.

All simplicial complexes considered will be finite, and will be in Euclidean space; we will not need to specify
the dimension of the ambient space. We take all simplices to be closed. If K is a simplicial complex, we let |K|
denote the underlying topological space of K . If S is a finite set, we will let |S| denote the cardinality of S.

2 The main lemma

Our main tool is Lemma 2.3 below, which is used in the proofs of all three of our theorems. We start with the
following definitions, the first of which gives a broader class of maps than simplicial maps, in that simplices are
not required to be mapped onto simplices.

Definition 2.1 Let K and L be simplicial complexes. A map f : |K| →| L| is simplex respecting, abbreviated
SR, if the restriction of f to each simplex σ of K is an affine linear map taking σ into a simplex of L.

Note that the composition of two SR maps is SR. Let f : |K| →| L| be an SR map, where K is an n-di-
mensional simplicial complex, and suppose that τ is an n-simplex of K . If f |τ is not injective, and if x ∈
f(τ) − f

(
τ (n−2)

)
, then (f |τ)−1(x) will be a line segment.

Definition 2.2 Let K and L be finite n-dimensional simplicial complexes, and let f : |K| → |L| be an SR
map such that f(|Bd K|) ⊆ |Bd L|. Let A ⊂ |L| be a polygonal arc with endpoints x1 and x2. We say that A is
proper with respect to K , L and f if the following four conditions hold.

(1) A ∩ f
(∣∣K(n−2)

∣∣) = ∅.
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(2) (A − {x1, x2}) ∩ f
(∣∣K(n−1)

∣∣ −
∣∣K(n−2)

∣∣) consists of a finite set of points, each of which is a vertex of
A, and at each of which A passes transversally through f

(∣∣K(n−1)
∣∣ −

∣∣K(n−2)
∣∣).

(3) Each xi is either in the relative interior of an n-simplex of L and not in f
(∣∣K(n−1)

∣∣), or in the relative
interior of an (n − 1)-simplex of Bd L and not in f

(∣∣K(n−2)
∣∣).

(4) A ∩ |Bd L| contains at most x1 and x2.

For each xi, let the index of f at xi, denoted If (xi), be defined as follows: if xi in the relative interior of
an n-simplex of L, let If (xi) =

∣∣f−1(xi)
∣∣; if xi is in the relative interior of an (n − 1)-simplex of Bd L, let

If (xi) =
∣∣(f ||Bd K|)−1(xi)

∣∣.
Lemma 2.3 Let K be a finite n-dimensional simplicial complex, let P be an n-pseudomanifold with boundary,

let f : |K| →| P | be an SR map such that f(|Bd K|) ⊆ |BdP |, and let A ⊂ |P | be a polygonal arc with
endpoints x1 and x2 that is proper with respect to K , P and f . Then If (x1) ≡ If (x2) (mod 2).

P r o o f. The hypotheses on A, and the fact that f is an SR map, together imply that f−1(A) can be thought
of as a graph G. The vertices of G are all in the inverse images of the vertices of A, and the edges of G are of
two types, those equal to inverse images of edges of A, and those in the inverse images of vertices of A. Let v be
a vertex of G. Thus v ∈ f−1(q) for some unique vertex q of A.

Suppose first that q )= xi for i = 1, 2. Thus q ∈ |P | − |BdP |. If q /∈ f
(∣∣K(n−1)

∣∣ −
∣∣K(n−2)

∣∣), then v is
contained in the relative interior of an n-simplex of K on which f is injective. Hence v is contained in two edges
of G, since q is contained in two edges of A. If q ∈ f

(∣∣K(n−1)
∣∣ −

∣∣K(n−2)
∣∣), then v is in the relative interior

of an (n − 1)-simplex η of K − Bd K . If τ is an n-simplex of K containing η, then either f |τ is injective, in
which case f(τ) contains at least part of an edge of A (and thus τ contains at least part of an edge of G), or f |τ
is not injective, in which case τ contains an edge of G. It follows that v is contained in one edge of G for each
n-simplex of K containing η; since η is contained in an even number of n-simplices of K , then v is contained in
an even number of edges of G.

Now suppose that q = xi for some i. There are two cases. Suppose first that q is in the relative interior of an
n-simplex of P and not in f

(∣∣K(n−1)
∣∣). Then v is contained in a single edge of G. Second, suppose that q is in

the relative interior of an (n − 1)-simplex of Bd P and not in f
(∣∣K(n−2)

∣∣). Then v is in the relative interior of
an (n − 1)-simplex σ of K . If σ is in K − Bd K , then as above, it is seen that v is contained in an even number
of edges of G. On the other hand, if σ is in BdK , then it can be seen that v is contained in an odd number of
edges of G.

Putting together the above observations, it follows that the number of vertices of G contained in odd numbers
of edges of G is equal to If (x1) + If (x2). However, by Lemma 1.6, we deduce that If (x1) + If (x2) is an even
number. The desired result follows.

Our first application of Lemma 2.3 is to prove the following two lemmas, the first of which allows us to give
an elementary definition of the mod 2 degree of SR maps, which in turn is used to prove Theorem 1.4.

Lemma 2.4 Let M be an n-dimensional simplicial complex with Bd M = ∅, let P be an n-pseudomanifold,
and let f : |M | →| P | be an SR map. Let x1 and x2 be points in the relative interiors of n-simplices of P , such
that x1, x2 /∈ f

(∣∣M (n−1)
∣∣). Then

∣∣f−1(x1)
∣∣ ≡

∣∣f−1(x2)
∣∣ (mod 2).

P r o o f. By hypothesis we have |BdM | = ∅ = |BdP |, and hence f(|BdM |) ⊆ |Bd P | is true trivially.
It follows from the strong connectivity in the definition of pseudomanifolds that there is a polygonal arc

A ⊂ |P | with endpoints x1 and x2 satisfying the hypotheses of Lemma 2.3. Hence If (x1) ≡ If (x2) (mod 2).
By hypothesis on the xi, we see that If (xi) =

∣∣f−1(xi)
∣∣ for i = 1, 2.

Definition 2.5 Let M be an n-dimensional simplicial complex with Bd M = ∅, let P be an n-pseudomani-
fold, and let f : |M | →| P | be an SR map. The mod 2 degree of f , denoted deg2f , is the equivalence class in Z2

of
∣∣f−1(x)

∣∣ for any x ∈ |P | in the relative interior of an n-simplex of P , such that x /∈ f
(
M (n−1)

)
.

Lemma 2.6 Let K be a finite n-dimensional simplicial complex, let N be an (n− 1)-pseudomanifold. Let C
be a component of K . Then there is no SR map f : |K| →| N | such that deg2f ||Bd C| = 1.
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P r o o f. Let f : |K| →| N | be an SR map. We will show that deg2f ||BdC| = 0.
Let P be a cone on N . It can be verified that P is an n-pseudomanifold with boundary, and that Bd P =

N . We can think of f ||C| as an SR map F : |C| →| P |. Let x1 be a point in the relative interior of an
(n − 1)-simplex of Bd P and not in f

(∣∣K(n−2)
∣∣), and let x2 be a point in the relative interior of an n-sim-

plex of P . Let A be the line segment with end points x1 and x2. Then F and A satisfy the hypotheses of
Lemma 2.3. Hence IF (x1) ≡ IF (x2) (mod 2). Clearly IF (x2) =

∣∣F−1(x2)
∣∣ = 0. Therefore 0 = IF (x1) =∣∣(F ||Bd C|)−1(x1)

∣∣ =
∣∣(f ||Bd C|)−1(x1)

∣∣ = deg2f ||BdC|.

3 Proofs of the theorems

P r o o f o f T h e o r e m 1.3. Suppose that X is homeomorphic to |K|, for some finite n-dimensional simpli-
cial complex K . By a remark made above, it will suffice to show that there is no continuous map r : |K| →
|Bd K| such that r(x) = x for all x ∈ |BdK|.

If BdK = ∅, then there is no map of any sort |K| →| BdK|, so assume Bd K )= ∅. Suppose that there is a
continuous map r : |K| →| BdK| such that such that r(x) = x for all x ∈ |Bd K|.

Let σ be an (n − 1)-simplex in Bd K . Let ∆ be an n-simplex, let η be an (n − 1)-face of ∆, and let w be the
vertex of ∆ not in η. Define a map h : |K| → ∆ by mapping σ affine linearly onto η, by mapping every vertex
in |K|− σ to w, and extending affine linearly over the simplices of K . Note that h is a simplicial map. It is seen
that the only (n − 1)-simplex of Bd K mapped by h onto η is σ. Let r′ = h ◦ r. Evidently r′(|K|) ⊆ |∂∆|, and
(r′||Bd K|)−1(η) = σ (this observation uses the fact that r||Bd K| is the identity map).

Let x1 be the barycenter of ∆, and let ε be the distance from x1 to |∂∆|. Since |K| is compact, the map r′ is
uniformly continuous, and thus there is some number δ > 0 such that if x, y ∈ |K| are any two points such that
‖x − y‖ < δ, then ‖r(x) − r(y)‖ < ε/2. Let K ′ be a subdivision of K such that the diameter of any simplex
of the subdivision is less than δ. (For example, let K ′ be the m-th barycentric subdivision for large enough m.)
Using an observation made at the start of this section, it is seen that |Bd K ′| = |Bd K|.

We define a map F : |K ′| → ∆ by letting F (v) = r′(v) for all vertices v of K ′, and extending F affine linearly
over all of K ′. Observe that F is SR, since it maps every simplex of K ′ affine linearly into ∆. By the choice of
K ′, we see that x1 /∈ F (|K ′|). Thus IF (x1) = 0. Let x2 be the barycenter of η. Because (r′||Bd K|)−1(η) = σ,
and because r′ maps σ homeomorphically onto η, it follows that IF (x2) = 1. On the other hand, let A be the
line segment from x1 to x2. Then F and A satisfy the hypotheses of Lemma 2.3. By the lemma we deduce that
IF (x1) ≡ IF (x2) (mod 2), a contradiction.

If one wants to prove the classical No Retraction Theorem directly, rather than Theorem 1.3, a simplified
version of Lemma 2.3 can be used, giving a shorter proof than we have given.

Theorem 1.4 can be derived easily from Lemma 2.6, by using the Simplicial Approximation Theorem (which
we have avoided so far), and the notion of topological degree; we omit the details.

The following very simple example illustrates the role of even vs. odd degree in Theorem 1.4. Let X be
the surface with boundary shown in Figure 1 (i); let B be one of the three boundary components of X . Then
Theorem 1.4 implies that there is no continuous map f : X → B such that f is a homeomorphism when restricted
to each boundary component (since then deg f |∂X would be 3). By contrast, let Y be the surface with boundary
shown in Figure 1 (ii); let C be one of the four boundary components of Y . As the reader can verify, there is a
continuous map h : Y → C that is a homeomorphism when restricted to each boundary component.

(i)                                                                  (ii)

B

X

C

Y

Fig. 1
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P r o o f o f T h e o r e m 1.5. Let x1 be a point in the relative interior of σ, and let x2 be a point in the relative
interior of τ . It follows from the strong connectivity in the definition of pseudomanifolds that there is a polygonal
arc A ⊂ |P | with endpoints x1 and x2 satisfying the hypotheses of Lemma 2.3. Using that lemma, we deduce
that If (x1) ≡ If (x2) (mod 2). However, because f is simplicial, we see that If (x1) = νn−1(f ||BdK|, σ) and
If (x2) = νn(f, τ).
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