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1. INTRODUCTION. The world does not need yet another proof of the classical no
retraction theorem (NRT) and its equivalent partner the Brouwer fixed point theorem
(BFPT)—many lovely elementary proofs are widely known. What does merit a new
proof, however, is a much less well-known generalization of the NRT to a broader
class of topological spaces than only those that are homeomorphic to balls (which is
what the NRT and BFPT are traditionally about).

The purpose of this paper is to state and prove this generalized NRT in the 2-dimen-
sional case. In particular, we will show that a version of the NRT, when appropriately
stated, can be proved for the class of all topological spaces that are homeomorphic to
the underlying spaces of finite 2-dimensional simplicial complexes. (As the reader can
verify by finding examples, the BFPT does not generalize to all such spaces, and hence
the equivalence of the NRT and BFPT also does not generalize to all such spaces.) If
one were interested only in the classical NRT, our proof could be simplified even fur-
ther to give a particularly low-tech proof of that theorem, though we omit the details.

To remind the reader of what we are generalizing, we state the classical 2-dimen-
sional versions of the NRT and the BFPT. The exact analogs of both theorems hold in
higher dimensions, though we will not discuss them in this note. We use the notations
D2 and S1 to denote the unit ball and the unit circle respectively in R

2; that is,

D2 = {x ∈ R
2 | ‖x‖ ≤ 1} and S1 = {x ∈ R

2 | ‖x‖ = 1}.
We think of S1 as the boundary of D2. Also, if X is a topological space and A ⊆ X , a
retraction r : X → A is a continuous map such that r(a) = a for all a ∈ A.

Theorem 1.1 (No Retraction Theorem). There is no retraction r : D2 → S1.

Theorem 1.2 (Brouwer Fixed Point Theorem). Let f : D2 → D2 be a continuous
map. Then f has a fixed point.

The proof that the NRT and the BFPT are equivalent is simple, and can be found
in many texts on topology; see for example [5, pp. 272–273]. The most common way
to prove these theorems is to prove the NRT first, and then to deduce the BFPT from
the NRT. A widely used short proof of the NRT relies upon algebraic topology—the
fundamental group in the 2-dimensional case, and homology groups in higher dimen-
sions; see for example [9, p. 348] for the 2-dimensional case, and [8, p. 117] for the
higher-dimensional case.

There are also a number of very nice elementary proofs of the NRT that do not
involve algebraic topology, for example the well-known proof found in [7], with a
variant found in [10]. Another well-known proof of the NRT is given in [4]. This proof
is very short and clear, and also avoids algebraic topology, though it uses the simpli-
cial approximation theorem, which makes it not quite as low-tech as it at first appears.
Moreover, it has been pointed out recently in [6] that the standard simplicial approxi-
mation theorem does not suffice for [4], and that the relative simplicial approximation

342 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 116



theorem of [15] is needed, thereby diminishing somewhat the elementary nature of this
proof.

Although all the ingredients of the generalized NRT (Theorem 3.1 below) and its
proof are well-known, strangely the statement of this theorem does not appear to be
widely known. Indeed, the only place that the author has found the full version of
the generalized NRT is [12]; the proof in that paper is short and clever, and it avoids
both algebraic topology and the simplicial approximation theorem, though its use of
induction over the dimensions of the spaces involved makes the proof not entirely
transparent. The author has found two published versions of the generalized NRT that
are not as general as possible, one in [11], where there is a short and clever proof of the
generalized NRT for simplicial complexes that have boundary a sphere (the proof has
the same merits and drawbacks as [12]), and another in [14, pp. 150–151], where there
is an outline of a proof (given as exercises) of the generalized NRT restricted to pseu-
domanifolds with boundary (the proof uses the simplicial approximation theorem).

The purpose of the present note is both to bring the generalized NRT to the attention
of a wider audience, and to give an even more elementary and transparent proof of the
generalized NRT than the proofs given in [12], [11], and [14, pp. 150–151]. Another
advantage of our method is that the NRT can be generalized without much more effort
even further than we present here (and than is found in the three references just cited),
using the notion of mod 2 degree; see [1] for full details in all dimensions.

The tools in our proof involve nothing more technical than finite 2-dimensional
simplicial complexes in Euclidean space, subdivision and simplicial maps, and the
basic definition of a graph (in the sense of graph theory). As a very brief reminder,
it suffices for our purposes to think of a 2-dimensional simplicial complex as a fi-
nite collection of triangles in some Euclidean space, such that if two triangles have
nonempty intersection, they intersect in either a common vertex or a common edge;
see Figure 1. (Technically, a simplicial complex also contains as separate simplices all
the edges and vertices of all the triangles, but we will not refer to that.) If K is a 2-di-
mensional simplicial complex, the underlying space of K , denoted |K |, is the union of
the triangles in K ; a subdivision of K is a new 2-dimensional simplicial complex that
results from breaking up the triangles of K into smaller triangles, while maintaining
proper intersections between the new triangles. A simplicial map from one 2-dimen-
sional simplicial complex to another is a continuous map that takes each triangle of the
domain affine linearly onto a triangle, edge, or vertex of the codomain. A graph, for
our purposes, is just the 1-dimensional analog of a 2-dimensional simplicial complex,
that is, a finite collection of edges in some Euclidean space, such that if two edges have
nonempty intersection, they intersect in a common vertex; see Figure 2.

Figure 1. Figure 2.
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The NRT will be seen to be an issue of parity. The key to our proof is the following
elementary result from graph theory, the proof of which is sufficiently simple to be left
to the reader; a proof, and further discussion, can be found in many introductory texts
on graph theory, for example [3, p. 14]. This lemma could fairly be said to be the core
of the NRT.

Lemma 1.3. Let G be a graph with no loops. The number of vertices of G that are
contained in odd numbers of edges is even.

2. WHAT IS A BOUNDARY? The standard NRT is about continuous maps from
the unit ball to its boundary. The theorem also holds if the unit ball is replaced by
anything homeomorphic to it.

The generalized NRT is about continuous maps from a larger class of topological
spaces to their boundaries. The statement and proof of the generalized NRT will be
given in Section 3, but before we can state the theorem, we need to discuss its most
interesting aspect, which is finding the right definition of boundary in this generalized
context.

The term “boundary” in topology has a number of meanings. In arbitrary topologi-
cal spaces, the boundary of a set is the intersection of its closure and the closure of its
complement. For manifolds with boundary, there is a different definition of boundary.
In the case of a disk in the plane, these two notions of boundary coincide, though they
do not coincide in general. The notion of boundary that is relevant here is the boundary
of a manifold with boundary. In the 2-dimensional case, a manifold with boundary is
just a surface with boundary, which we now discuss informally.

The model of the boundary of a surface with boundary is the boundary of D2, which
is S1. No fancy definition is needed for the boundary of D2, and all that is used is the
notion of distance in R

2.
Next, suppose that X is a topological space that is homeomorphic to D2. It can be

proved, using invariance of domain, that if f : D2 → X is a homeomorphism, then
f (S1) is independent of the choice of the map f , and hence the boundary of X is
defined to be f (S1) for any choice of homeomorphism f . See [2, pp. 50–51] for a
proof of this fact. See [9, pp. 383–384] for a proof of the 2-dimensional version of
invariance of domain using the fundamental group, and see [8, p. 207] for a proof of
invariance of domain in all dimensions using homology.

More generally, invariance of domain can be used to define the boundary of any
surface with boundary. See Figure 3 for an example of a surface with boundary. We
will not provide a rigorous treatment of surfaces with boundary here, because we are
interested in surfaces with boundary only for the purposes of analogy. However, we
note one very important property of the boundary of a surface with boundary, which is

Figure 3.
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that the boundary, viewed as a 1-dimensional manifold, does not itself have a boundary.
The general idea that the boundary of a boundary is empty is very important in various
parts of mathematics, for example in homology theory, and we will return to this idea
shortly.

For our generalized NRT, we want to consider spaces that might not be surfaces
with boundary. For example, we see in Figure 4 the result of taking three disks, gluing
their boundaries along a common circle (the middle disk is shaded, and the top and
bottom disks are transparent), removing two small disks from the middle disk and
one small disk from each of the top and bottom disks, and adding tubes where the
small disks were removed as shown in the figure. This object is not a surface (with or
without boundary), though it is certainly a topological space. We will shortly assign to
this object a “boundary,” in a way that generalizes, and is consistent with, the notion of
boundary for surfaces with boundary. The key observation is that the object shown in
Figure 4 is homeomorphic to the underlying space of a finite 2-dimensional simplicial
complex, and we will use this simplicial structure to help us find the boundary.

Figure 4.

We use the term “simplicial surface” to denote any 2-dimensional simplicial com-
plex with underlying space that is a surface without boundary. For example, the octa-
hedron shown in Figure 5 is a simplicial surface. It is immediately observed that every
edge in the octahedron is contained in precisely two triangles, and it might be tempt-
ing to conclude that simplicial surfaces are precisely those 2-dimensional simplicial
complexes in which every edge is contained in two triangles, but that would be incor-
rect. For example, the 2-dimensional simplicial complex shown in Figure 6 satisfies
this condition, though its underlying space is certainly not a surface. It is standard to
call a 2-dimensional simplicial complex K a 2-dimensional pseudomanifold if every
edge of K is contained in two triangles. (Actually, the common definition of pseu-
domanifold also contains two other conditions, one concerning pure 2-dimensionality
and the other concerning connectivity, but we will not need these conditions for our
discussion; see for example [5, p. 252] for more about pseudomanifolds.)

Figure 5. Figure 6.
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What about simplicial surfaces with boundary? Consider a triangulated disk, for
example the one shown in Figure 1. It is clear that the boundary of the disk consists of
those edges that are contained in exactly one triangle each. The edges in the interior of
the disk are contained in two triangles each. It is standard to call a 2-dimensional sim-
plicial complex K a 2-dimensional pseudomanifold with boundary if every edge of
K is contained in one or two triangles; the boundary of K , denoted Bd K , is the col-
lection of all edges of K that are contained in one triangle each. (Again, the common
definition contains two additional conditions that we will not need.) For example, the
2-dimensional simplicial complex shown in Figure 7 is a 2-dimensional pseudomani-
fold with boundary; its boundary is a figure eight.

v

Figure 7.

So far so good, but there is a problem with the above definition. Recall the idea,
stated above for surfaces with boundary, that the boundary of a boundary should be
empty. Does that hold for 2-dimensional pseudomanifolds with boundary? Suppose
that K is a 2-dimensional pseudomanifold with boundary. It is evident that Bd K is
1-dimensional. To say that the boundary of the boundary of K is empty ought to mean
that Bd K is a 1-dimensional pseudomanifold without boundary, which means that
every vertex in Bd K is contained in precisely two edges. For example, if we take K to
be the disk shown in Figure 1, then clearly Bd K is a circle, and every vertex in Bd K
is indeed contained in two edges, as we would hope. However, if we take K to be the
2-dimensional simplicial complex shown in Figure 7, then Bd K is a figure eight, and
the vertex v is contained in four edges, not two. Hence, it is not the case that Bd K is
always a 1-dimensional pseudomanifold.

As is often the case in mathematics, when things don’t work out as expected, we
can try to save the situation by changing the rules. What made the 2-dimensional sim-
plicial complex in Figure 7 problematic is that in Bd K , the vertex v is not contained
in precisely two edges. If the vertex v were contained in one edge, then Bd K would
be a 1-dimensional pseudomanifold with boundary, and the problem would not be re-
pairable. However, given that v is contained in four edges, we can get out of harm’s
way by noting that four, like two but unlike one, is an even number. So, we can try to
modify the definition of 2-dimensional pseudomanifold by looking not at the differ-
ence between two and one, but between even and odd.

We might want to say that a 2-dimensional simplicial complex K is a “2-dimen-
sional mod 2 pseudomanifold” if every edge of K is contained in an even number of
triangles. It would be tempting to say further that a 2-dimensional simplicial complex
K is a “2-dimensional mod 2 pseudomanifold with boundary” if every edge of K is
contained in an even number or an odd number of triangles, and that the boundary of
K would consist of all edges that are contained in an odd number of triangles each. Of
course, the term “2-dimensional mod 2 pseudomanifold with boundary” is very silly,
because every edge in every 2-dimensional simplicial complex is contained in some
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finite number of edges (recall that we are restricting attention to finite simplicial com-
plexes), and any whole number is either even or odd. However, the boundary aspect
of this proposed term makes sense nonetheless, and so we are led to the following
definition.

Definition. Let K be a finite 2-dimensional simplicial complex. The boundary of K ,
denoted Bd K , is the collection of all edges of K that are contained in an odd number
of triangles each. �

Observe that Bd K is a (possibly empty) 1-dimensional subcomplex of K . What
we thought of calling a “2-dimensional mod 2 pseudomanifold” above is simply a
simplicial complex with empty boundary, and therefore we do not need this proposed
term.

This definition of the boundary of an arbitrary 2-dimensional simplicial complex
(and the analogous definition in higher dimensions) is known in the literature (see
for example [13, p. 136]), though the author came upon this definition independently
for precisely the considerations stated above. (However, as previously mentioned, al-
though this notion of boundary of finite simplicial complexes appears in various places
in the literature, the only place where the author found this definition used in formu-
lating an exact analog of the NRT was in [12].)

We now turn to the topological version of the above approach to boundary, starting
with the following notation.

Definition. For each nonnegative integer i , let Ti denote the space obtained by gluing
together i copies of the half-open interval [0, 1) at the point {0} in each. We take T0 to
be a single point. Let ∗ denote the point of Ti where the half-open intervals meet. �

In Figure 8 we see Ti for i ∈ {0, 1, 2, 3}, and in Figure 9 we see part of T3 × R,
which we will need in the following definition.

Figure 8.

Figure 9.
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Definition. Let X be a topological space that is homeomorphic to the underlying space
of a 2-dimensional simplicial complex. For each nonnegative integer r , we define the
subset Cr (X) of X to be

Cr (X) = {x ∈ X | x has a neighborhood homeomorphic to Tr × R,

where the homeomorphism takes x into {∗} × R}.
The boundary of X , denoted ∂ X , is defined by

∂ X = cl
⋃

r is odd

Cr (X),

where cl denotes closure. �
If we let X be the object seen in Figure 4, then ∂ X is the circle along which the three

original disks were glued (the boundaries of the four small disks that were removed
are not part of ∂ X , because of the tubes). On the other hand, if Y is the analogous
construction but starting with four disks that are glued along a circle, then ∂Y = ∅.

We offer the following comments about the above definition, omitting the proofs.

Remark 2.1. (1) The sets Cr (X) are topological invariants of X , and are disjoint; this
fact can be seen by using local homology around each point in X .

(2) For each r �= 2, the set Cr (X) is a finite disjoint union of arcs (without endpoints)
and simple closed curves.

(3) The set ∂ X is a topological invariant of X .

(4) If M is a surface with boundary, then ∂ M is just the standard boundary of M as a
surface with boundary.

(5) If K is a 2-dimensional simplicial complex, then ∂|K | = | Bd K |. ♦

3. THE GENERALIZED NO RETRACTION THEOREM. Having defined the
relevant notion of boundary, we are now ready to state and prove the generalized no
retraction theorem.

Theorem 3.1. Let X be a topological space that is homeomorphic to the underlying
space of a finite 2-dimensional simplicial complex. Then there is no retraction r : X →
∂ X.

Proof. Suppose that X is homeomorphic to |K |, for some finite 2-dimensional simpli-
cial complex K . By Remark 2.1 (5), it will suffice to show that there is no retraction
r : |K | → | Bd K |.

If Bd K = ∅, then there is no map of any sort |K | → | Bd K |, so assume Bd K �= ∅.
Suppose to the contrary that there is a retraction r : |K | → | Bd K |. We will obtain a
contradiction.

Step 1: Let � be an equilateral triangle with sides of length 1, such that � is disjoint
from K . Let η be an edge of �, and let w be the vertex of � not in η. Let σ be an
edge in Bd K (which exists because we are assuming that Bd K �= ∅). Define a map
h : |K | → � by mapping σ affine linearly onto η, by mapping every vertex in |K | − σ

to w, and extending affine linearly over the simplices of K . Note that h is a simplicial
map, that it is continuous, and that all the edges of K (including all of Bd K ) are
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mapped into ∂�. It is seen that the only edge of Bd K mapped by h onto η is σ . Let
r ′ = h ◦ r . Because r maps |K | into | Bd K |, then r ′(|K |) ⊆ |∂�|. Because r || Bd K | is
the identity map, it follows that (r ′|| Bd K |)−1(η) = σ .

We know that r ′ is continuous, and hence the compactness of |K |, together with a
standard theorem in real analysis (see for example [9, p. 176]), implies that r ′ is uni-
formly continuous. Hence there is some number δ > 0 such that if z, w ∈ |K | are any
two points such that ‖z − w‖ < δ, then ‖r ′(z) − r ′(w)‖ < 1/8. Let L be a subdivision
of K such that the diameter of any triangle of L is less than δ. (It is intuitively evident
that such a subdivision can be found, and it can be proved rigorously by using the
mth barycentric subdivision for large enough m.) Using Remark 2.1 (5), it is seen that
| Bd L| = | Bd K |.

Define a map f : |L| → � by letting f (v) = r ′(v) for all vertices v of L , and
extending f affine linearly over the simplices of L . Because r is the identity on | Bd K |,
and because r ′(|K |) ⊆ |∂�|, it follows that f maps all vertices of L , and all edges of
Bd L , into |∂�|. It is not necessarily the case that f maps all edges and triangles of
L into |∂�|. However, using the definition of L , and the fact that f is an affine linear
map on each simplex of L , it follows that if τ is a triangle in L , then the diameter of
f (τ ) is less than 1/8. Hence, because all vertices of L are mapped into |∂�|, every
triangle of L that is not mapped into an edge of |∂�| must have its image located in
one of the three equilateral triangles with altitudes of length 1/8 located at the vertices
of �. That is, the image of L is contained in the edges of � together with the three
shaded triangles seen in Figure 10.

Figure 10.

Choose a point y in the relative interior of η such that it is not the image of any
vertex of L under f , and such that it is within 1/8 of the midpoint of η; given that L
has finitely many vertices, such a point y can always be found.

Because (r ′|| Bd K |)−1(η) = σ , and because r ′ maps σ homeomorphically onto η, it
follows that ( f || Bd L|)−1({y}) = ( f || Bd K |)−1({y}) has one point in it.

Step 2: The choice of y, together with fact that f maps each simplex of L affine
linearly, implies that f −1({y}) can be thought of as a graph G, where the vertices of G
consist of all nonempty intersections of f −1({y}) with the relative interiors of edges
of L , and the edges of G consist of all the nonempty intersections of f −1({y}) with
the triangles of L . Those triangles of L that contain an edge of G are precisely those
mapped by f into η and have y in the relative interior of their images; no such triangle
contains more than one edge.
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Let v be a vertex of G. We know that v ∈ f −1({y}), and that v is in the relative
interior of an edge μ of L . Let τ be a triangle of L that contains μ. Given the distance of
y from the three shaded triangles in Figure 10, together with the fact that the diameter
of f (τ ) is less than 1/8, it follows that f (τ ) is contained in η. Hence τ contains an
edge of G. Therefore the number of edges of G that contain v equals the number of
triangles of L containing μ. It follows from the definition of Bd L that v is contained
in an odd number of edges of G if and only if μ is in Bd L .

It follows that the number of vertices of G contained in odd numbers of edges of
G is equal to the number of points in ( f || Bd L|)−1({y}). Because G has straight line
edges, it therefore has no loops, and hence we can apply Lemma 1.3 to deduce that
the number of points in ( f || Bd L|)−1({y}) is an even number. We have thus reached a
contradiction, because in Step 1 we saw that ( f || Bd L|)−1({y}) had one point in it.

Using the fact that compact surfaces with boundary can be triangulated, combined
with Remark 2.1 (4), we immediately deduce the following.

Corollary 3.2. Let X be a compact surface with boundary. Then there is no retraction
r : X → ∂ X.
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