ERRATA FOR

"Proofs and Fundamentals: A First Course in Abstract Mathematics"
Second edition
Ethan D. Bloch
Springer-Verlag, 2010

Last Updated February 22, 2024

Below is an updated list of errata. The fault for all the errors in the book is my own, and I offer my sincere apologies for any inconvenience caused by the errors in the book.

This list was compiled with the generous assistance of: Tilman Bauer, Taylor Boone, Joan Nicolas Castro Cortes, César Hernández Cruz, Daniel Cunningham, Eugene Dorokhin, Jenna Galka, Filipe Gomes, Beth Hoffman-Patalona, Ammar Khanfer, David Lou, Alex Lowe, Brendan Macmillan, David Makinson, Darren A. Narayan, George Vaughan, Rayo Verweij, Paul Weemaes, Japheth Wood.

If you find any additional errors in the book, or any errors in this list of errors, I would very much appreciate it if you would let me know by email at bloch@bard.edu.

Page	Line/Item	Text	Comment/Should be
6	Line 2	"and $x<2$ "	Should be "and therefore $x<2$ "
8	Line - 15	$" P \wedge Q "$	Should be " $P \rightarrow Q$ "
16	Line -3	"is the same"	Should be "are the same"
20	Line -15	"the statement $[P \vee(Q \wedge R)] \leftrightarrow$ $[(P \vee Q) \wedge(P \vee R)]$, ,	Should be "the statement $[P \vee(Q \wedge R)] \leftrightarrow$ $[(P \vee Q) \wedge(P \vee R)]$ is always true,"
21	Line -8	"note that, however, that"	Should be "note, however, that"
34	Line -19	"theorem"	Should be "theorems"
36	Line 7	"the $P(x)$ "	Should be " $P(x)$ "
38	Line 18	"all types of ,"	Should be "all types of fruit,"
39	Line -10	"it it"	Should be "in it"
41	Line - 16	"of U "	Should be "in U "
43	Exercise 1.5.4(3)	"is not riper"	Should be "are not riper"
44	Exercise 1.5.6(3)	"equation"	Should be "inequality"

Line 5

Line - 2

Paragraph 3

Line 13

Lines 29-23
"the student"
"A proof is an explanation of why something is true. A well-written proof is an explanation that someone else can understand."

Line -1 " $x y<0$ "

Line 8 "only then"
Line -6 "young age)."
" $A \not \subset B "$

Should be " $x y \leq 0$ "
Should be "Third"
Should be "proof"
Replace the entire paragraph with "Though we have proved that there are infinitely many prime numbers, our proof did not produce an explicit infinite list of prime numbers, but only proved that in theory such a list exists. More generally, we distinguish between a constructive proof, which proves the existence of something by actually producing it, and an existence proof (such as the above proof), which only shows that in theory something exists. Existence proofs are one of the hallmarks of modern mathematics. Though most mathematicians today accept existence proofs, there is a minority who do not accept their validity. See [Ang94, Chapter 39], [GG94, Section 5.6] and [EC89, Chapter 26] for a discussion of the mathematical philosophies known as "intuitionism" and "constructivism," which differ from mainstream mathematics."

Should be "he"

Should be "A proof is an argument showing that something is true. A wellwritten proof is an argument that someone else can understand."

Should be " $x y \leq 0$ "
Should be "then only"
Should be "young age.)"
Should be " $A \nsubseteq B$ "

Definition 3.4.2

112 After the first paragraph

113 Line - 3
$" x \in \bigcup_{i \in I} A_{i} "$
115
116
123
Exercise 3.2.5(3) "The set of all rational numtheir denominators."

Exercise 3.2.13
" $\mathcal{P}(A) ?$?"
Exercise 3.3.10
$" C \subset A \cup B "$
Line $5 \quad$ "some $i \in \mathbb{N}$ "
, bers that have a factor of 5 in

Should be " $y \in \bigcup_{i \in I} A_{i}$ "
Should be " $\bigcap_{X \in \mathcal{A}} X \supseteq \bigcap_{Y \in \mathcal{B}} Y$ "
Should be "such"
Should be "The family C is a chain in \mathscr{P} "

Line

Line - 12

Theorem 3.5.6 (Zorn's Lemma)

Exercise 4.2.4 "for all $(x, y) \in \mathbb{R}$ "
"by from"
Line -4 "for all $x \in \mathbb{R}$ "
Exercise 4.3.5 "Let A and B be sets"
$"(g \circ f)(a)=p "$
"we write $a R b$ if $(a, b) \in R$ "
Line $18 \quad$ " $a \sim y$ "
Exercise 5.3.12

Commutative diagram
"Parts (12) and (15)"
"We will shown"
"Proof Theorem 6.5.10"
"to proved"
"CC"
$" \cup_{F \in C} C "$
"this section"

There is an error in the proof of Zorn's Lemma. A valid proof may be found at http://faculty.bard.edu/ bloch/zorns_lemma_proof.pdf

Should be "Theorem"
Should be "for all $(x, y) \in \mathbb{R}^{2 "}$
Should be "by"
Should be "for all $x \in(0, \infty)$ "
Should be "Let A, B and C be sets"
Should be " $(g \circ f)(a)=c "$
Should be "we write $a R b$ if $(a, b) \in \bar{R}$ "
Should be " $x \sim y$ "
In the commutative diagram change " f " to " h "

In the commutative diagram change " H " to " A " in two places

Should be "Parts (10), (12) and (15)"
Should be "We will show"
Should be "Proof of Theorem 6.5.10"
Should be "to provide"
Should be " C "
Should be " $\bigcup_{F \in \mathcal{C}} F$ "
Should be "Section 6.5"

243	Line 28-30	"By Theorem 6.7.1 and Theorem 6.6.9 (2) we see that $\mathbb{Q} \cup P$ is countable, and by Lemma 6.5.5 (2) and Corollary 6.6 .6 we see that $\mathbb{Q} \cup P$ is countably infinite."	Should be "By Theorem 6.7.1 and Lemma 6.5.5 (2) we know that \mathbb{Q} is both countable and infinite. Hence, Theorem 6.6.9 (2) implies that $\mathbb{Q} \cup P$ is countable. Because $\mathbb{Q} \cup P$ contains an infinite set, it follows from Corollary 6.6.6 that $\mathbb{Q} \cup P$ is infinite. Because $\mathbb{Q} \cup P$ is both countable and infinite, then it is countably infinite."
247	Line 21	"rational rational"	Should be "rational"
251	Line -5	"the properties"	Should be "their properties"
259	Line -4	"it will follow that $a^{\prime} * b^{\prime \prime}$ "	Should be "it will follow that $b^{\prime} * a^{\prime \prime}$ "
261	Line 20	" $H \subset G$ "	Should be " $H \subseteq G$ "
280	Exercise 7.4.13	"let $h: X \rightarrow A$ be a function"	Should be "let $h: X \rightarrow A$ be an injective function"
317	Line -7	"case case"	Should be "case"
321	Line 10	"that that"	Should be "that"
342	Line - 15	"real number"	Should be "real numbers"

