
Theorem 3.5.6 (Zorn’s Lemma). Let P be a non-empty family of sets. Suppose that

if C ⊆ P is a chain, then
�

C∈C C ∈ P . Then P has a maximal element.

Proof. We follow [Bro], which says that it adapted the proof from [Lan93].
For each A ∈ P , let TA be the set defined by

TA =

�
{A}, if A is a maximal element of P
{Q ∈ P | A � Q}, if A is not a maximal element of P .

Observe that TA non-empty for every A ∈ P , and hence {TA}A∈P is a family of
non-empty sets. By the Axiom of Choice (Theorem 3.5.3) there is a family of sets
{FA}A∈P such that FA ⊆ TA and FA has exactly one element for all A ∈ P . For each
A ∈ P , let SA be the single element in FA. By the definition of TA we see that SA ∈ P
and A ⊆ SA for all A ∈ P ; moreover, we have SA = A if and only if A is a maximal
element of P . To prove the theorem, it therefore suffices to find some M ∈ P such
that SM = M.

Let R ⊆ P . The family R is closed if A ∈ R implies SA ∈ R , and if C ⊆ R is a
chain then

�
C∈C C ∈ R .

By hypothesis the family P is closed. Let M be the intersection of all closed
families in P .

We now prove four claims about M . Using these claims, we deduce the theorem,
as follows. Let M =

�
C∈M C ∈ P . Claim 4 says that M is a chain, and Claim 1 says

that M is closed. It follows that M ∈ M . Again using the fact that M is closed, we
deduce that SM ∈ M . However, we know by Theorem 3.4.5 (2) that C ⊆ M for all
C ∈M , and hence in particular that SM ⊆M. As noted above, we know that M ⊆ SM ,
and we deduce that SM = M, and that is what needed to be proved. (Claims 2 and 3
were not used here, but are needed to prove Claim 4.)

Claim 1. We will show that the family M is closed.
Let A ∈M . Then A ∈ R for all closed families R ⊆ P , and hence SA ∈ R for all

closed families R ⊆ P , and hence SA ∈M . A similar argument shows that if C ⊆M
is a chain then

�
C∈C C ∈M ; the details are left to the reader.

Claim 2. Let A ∈ M . Suppose that B ∈ M and B � A imply SB ⊆ A. We will
show that B⊆ A or B⊇ SA for all B ∈M .

Let
ZA = {C ∈M | C ⊆ A or C ⊇ SA}.

We first show that ZA is closed.
First, let D ∈ ZA. Then D ∈M , and D⊆ A or D⊇ SA. Because M is closed, then

SD ∈M . Suppose first that D⊆ A. If D � A, then by hypothesis on A we deduce that
SD ⊆ A, which implies that SD ∈ ZA. If D = A, then SD = SA, and hence SD ⊇ SA,
which implies SD ∈ ZA. Suppose second that D ⊇ SA. Because SD ⊇ D, it follows
that SD ⊇ SA, which implies SD ∈ ZA.

Next, let C ⊆ ZA be a chain. Because M is closed, we know that
�

C∈C C ∈ M .
There are two cases. First, suppose that C ⊆ A for all C ∈ C . Then by Theo-
rem 3.4.5 (2) it follows that

�
C∈C C ⊆ A, and hence

�
C∈C C ∈ ZA. Second, suppose



that there is some E ∈ C such that E � A. Because E ∈ ZA, then E ⊇ SA. Because�
C∈C C⊇ E, it follows that

�
C∈C C⊇ SA. Hence

�
C∈C C ∈ ZA. We deduce that ZA is

closed.
Because M is the intersection of all closed families of sets in P , it follows that

M ⊆ ZA. On the other hand, by definition we know that ZA ⊆M , and it follows that
ZA = M . We deduce that B⊆ A or B⊇ SA for all B ∈M .

Claim 3. We will show that if A ∈M , then B ∈M and B � A imply SB ⊆ A.
Let

W = {A ∈M | B ∈M and B � A imply SB ⊆ A}.

We first show that W is closed.
First, let F ∈ W . Then F ∈ M , and B ∈ M and B � F imply SB ⊆ F . Because

M is closed, we know that SF ∈M . Let G ∈M , and suppose that G � SF . It follows
that G � SF . By Claim 2 we know that G ⊆ F . There are two cases. First, suppose
that G � F . Then SG ⊆ F . Because F ⊆ SF , it follows that SG ⊆ SF . Second, suppose
that G = F . Then SG = SF , and hence SG ⊆ SF . We deduce that SF ∈W .

Next, let C ⊆W be a chain. Because M is closed we know that
�

C∈C C ∈M . Let
H ∈ M , and suppose that H � �

C∈C C. If it were the case that C ⊆ H for all C ∈ C ,
then it would follow from Theorem 3.4.5 (2) that

�
C∈C C⊆H, which is not possible.

Hence there is some K ∈ C such that K � H. Because K ∈W , then B∈M and B � K

imply SB ⊆ K. By Claim 2 we deduce that B⊆ K or B⊇ SK for all B ∈M . Because
SK ⊇ K, it follows that B ⊆ K or B ⊇ K for all B ∈ M . Because K � H, it follows
that K ⊇ H. If K = H then it would follow that K ⊆ H, which is not true, and hence
we deduce that H � K. It then follows that SH ⊆ K. Because K ∈ C , we deduce that
SH ⊆

�
C∈C C. Hence

�
C∈C C ∈W . We deduce that W is closed.

By an argument similar to the one used in Claim 2, we deduce that W = M , and
therefore we know that if A ∈M , then B � A implies SB ⊆ A for all B ∈M .

Claim 4. We will show that M is a chain.
Let A,C ∈ M . By Claim 3 we know that B � A implies SB ⊆ A for all B ∈ M ,

and hence by Claim 2 we deduce that B⊆ A or B⊇ SA for all B ∈M . Hence C ⊆ A

or C ⊇ SA. Because SA ⊇ A, it follows that C ⊆ A or C ⊇ A. We deduce that M is a
chain. ��
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