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The Einstein convention, indices and networks

These notes are intended to help you gain facility using the index notation to do calculations for
indexed objects. The advantage of this notation is that it allows you to perform many calculations
all at once. Each value of the free indices (see below) represents an equation that you previously
would have had to work out on its own.

1 Einstein summation convention

For reasons that I don’t fully understand your textbook avoids one convention that is pervasive
throughout all of physics and which is extremely useful. This section introduces this convention,
the Einstein summation convention.

Frequently when we would like to keep track of the components of a vector v = (v1, v2, v3) we
use index notation. In this notation vi refers to the ith element of the collection {v1, v2, v3} =
{vi}(i=1,...,3). For example, if we have two vectors v and w then we can write their dot product as,

v ·w =
3∑
i=1

viwi = v1w1 + v2w2 + v3w3.

The central notation with the capital greek sigma (Σ) is redundant: firstly, the values that i runs
over should be clear either from the context (e.g. 3D vectors) or specified when the vector (or
whatever is indexed) is introduced. Secondly, whenever you have a sum over indexed quantities
you will use the same label for all quantities summed over, so that in fact, the sigma itself is
redundant. Thus Einstein defined

viwi ≡
∑
i

viwi,

that is, a repeated index (i in this case) means take a sum over that index. This notation is used
everywhere in physics and is very efficient.

I will use this convention in lecture. On occasion I will also write in the sigma; this is often
stylistic, with the intention of emphasizing the sum but it can also be necessary for clarity, for
example, when a sum contains three indices that are all the same. There are also instances where
you don’t want a repeated index to imply a sum and this is usually written out explicitly. An
example from your textbook is the definition of the angular momentum of the αth particle in a
collection of N particles,

`α = rα × pα (no sum).

Finally we distinguish between free and dummy indices. A free index is one that is not summed
over and consequently can take any of the values in its allowed range. For example i is a free index
in this familiar equation,

Fi = mai, (i = 1, 2, 3).

This equation is shorthand for the three equations representing the components of Newton’s second
law. By contrast, a dummy index is one that is summed over and instead it must take all of the
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values in its allowed range. The dot product equation above is an example. Dummy indices have
an interesting property: you can rename them at will (hence the name). For example, both viwi
and vjwj represent exactly the same thing,

viwi = vjwj = v1w1 + v2w2 + v3w3.

This is useful to keep in mind as you will often run out of names for indices and you might want
to rename something that you’ve already written.

By the way, experts sometimes use free indices to point out each other’s mistakes; the free
indices on the two sides of an equation must agree otherwise the equation doesn’t make sense. Here
are two examples that you can think through,

viwja
i = Fj

and
aibjckuivjwk = Ll.

Which is “well formed” and which is not?

2 Indices for 3D quantities

There are many more conventions about indices and what they mean in the physics literature.
In this section I introduce a few more. As mentioned above the intention of this supplement is
primarily to get you up to speed with calculating using indices; for a wonderful exposition of
what all of this means see Nadir’s recent book “An Introduction to Tensors and Group Theory for
Physicists.”

At this point I’ll specialize to consideration of 3D vectors, this will keep things concrete and
specify the range of all indices. Many texts and articles distinguish between upper and lower indices.
An upper index usually indicates a standard vector and we represent it by a column matrix made
up of its components,

vi =

v1v2
v3

 .

While a lower index refers to a “dual” vector and is represented by a row of its components,

ui = (u1, u2, u3).

There is a mathematical gadget, called a metric, that converts vectors into dual vectors, vi 7→ vi.
It turns out that in regular, Euclidean, 3-space this gadget is represented by the matrix

δij =

1 0 0
0 1 0
0 0 1
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and so,

vi = δijv
j =

1 0 0
0 1 0
0 0 1

v1v2
v3

 = (v1, v2, v3).

This shows that in Euclidean 3D the components of the dual vector vi corresponding to vi are the
same and there is little reason for distinction. (The only substantive distinction that remains is
the row vs. column distinction and we simply infer this by context). All of this is just to explain
why, in your text, there is no distinction made between upper and lower indices and everything is
denoted with a lower index. This convention is perfectly valid but you do want to keep room for a
distinction to arise in the future.1

The metric introduced above, δij , is often called the Kronecker delta and another one of its
functions is to contract two vectors into a dot product,

viδijwj = viwi = v ·w.

There is a second product of vectors that we have been using extensively, namely the cross product,

v ×w = (vywz − vzwy, vzwx − vxwz, vxwy − vywx).

This product can also be captured using the index notation. The key is to appreciate the antisym-
metry of this product and to introduce the Levi-Civita epsilon,

εijk =


1 if (i, j, k) is (1, 2, 3), (3, 1, 2) or (2, 3, 1),

−1 if (i, j, k) is (1, 3, 2), (2, 1, 3) or (3, 2, 1),

0 if i = j or j = k or i = k.

This definition is a little dense but not hard to unpack. One way to think about it is that if you
start with whichever index is 1 and read to the right (where if the 1 is in the last slot you consider
“to the right” as starting over) do you encounter a 2 or a 3. If you encounter a 2 it’s called a cyclic
permutation and you are in the top line of our definition, so for example ε312 = 1. If you encounter
a 3 it’s an anti-cyclic permutation and the middle line of the definition is the relevant one. If any
index is repeated then the Levi-Civita epsilon is zero.

A straightforward but tedious calculation confirms that the Levi-Civita epsilon captures the
cross product, if u = v ×w then,

ui = εijkvjwk.

Note the sums over the last two indices and the matching of the free i index on each side. To
reiterate, this efficiently captures all three components of the cross product in a single equation.

We need two more formulae to make the index notation as versatile as is necessary in this
course. The first one is a relationship between the ε and the δ introduced above. The proof of this
formula is again a somewhat involved calculation; I leave it to you for when you are in the dentist’s
waiting room. It is a wonderful formula and it is worth proving it at some point in your life,

εijkεklm = δilδjm − δimδjl.
1For example, such a distinction is of value in special relativity
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This is used when you have multiple cross products and simplifies them down to dot products
frequently. The second formula is not at all new to you it just expresses what you know about
derivatives in the index notation. Let us, as usual, denote the position vector by r = (x, yz) and
its index form by ri. What is the derivative of ri with respect to position, that is with respect to
rj? Well, that depends on whether i = j or not. If it does then, the derivative is 1 and if it’s not
then the derivative is 0. We can notate this with the Kronecker δ again. Because δij also has the
property that it is 1 if i = j and zero otherwise. Then,

∂ri
∂rj

= δij .

Alright, that does it. We can use these results to calculate all of the vector identities on the
front cover of Griffiths’ “Introduction to Electrodynamics.” I’ll do an example so that you get an
idea of how it works. Let’s derive

∇ · (A×B) = B · (∇×A)−A · (∇×B).

A common and useful index shorthand for nabla (∇) is ∂i and, of course, ∂i = ∂/∂ri. Then we’d
like to calculate,

∇ · (A×B) = ∂i[(A×B)]i,

here I am using the square braces to denote the ith component of the vector. So,

∂i[(A×B)]i = ∂i(εijkAjBk),

from our formula for the cross product. Now there comes an important point: because we’re
working with components, they are just regular variables (as opposed to vector variables) and so
we can use the product rule for regular variables. We find,

∂i(εijkAjBk) = εijkBk∂i(Aj) + εijkAj∂i(Bk).

(Note that εijk does depend on position so we don’t get derivatives of it.) Again we’re dealing with
components and they multiply as numbers so can commute things around to get,

εijkBk∂i(Aj) + εijkAj∂i(Bk) = Bkεijk∂i(Aj) +Ajεijk∂i(Bk).

Next we use the properties of the ε; a cyclic permutation of its indices doesn’t change its value,
while an anti-cylclic one incurs a minus sign. Let’s perform a cyclic permutation of the ε in the
first term and an anti-cyclic permutation of the one in the second term to get,

Bkεijk∂i(Aj) +Ajεijk∂i(Bk) = Bkεkij∂i(Aj)−Ajεjik∂i(Bk).

This last equation has recognizable pieces. The first term is a dot product between B and the curl
of A and the second is the dot product of A with the curl of B, so indeed,

∇ · (A×B) = B · (∇×A)−A · (∇×B).

Practice doing these calculations on the rest of the formulae on Griffiths’ cover.
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3 Networks

This is an optional section that I’m still working on. To summarize, some of us have an easier time
thinking visually. The index notation can make your eyes cross if you’re this type of person. This
section gives a visual way to do these calculations.
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