## SL(2,C) Chern-Simons Theory, a non-Planar Graph Operator, and 4D Loop Quantum Gravity with a Cosmological Constant: Semiclassical Geometry

H. M. Haggard, M. Han, W. Kamiński, and A. Riello

*Nuclear Physics B* **900** (1), 2015.

We study the expectation value of a nonplanar Wilson graph operator in SL(2,C) Chern-Simons theory on S^{3}. In particular we analyze its asymptotic behaviour in the double-scaling limit in which both the representation labels and the Chern-Simons coupling are taken to be large, but with fixed ratio. When the Wilson graph operator has a specific form, motivated by loop quantum gravity, the critical point equations obtained in this double-scaling limit describe a very specific class of flat connection on the graph complement manifold. We find that flat connections in this class are in correspondence with the geometries of constant curvature 4-simplices. The result is fully non-perturbative from the perspective of the reconstructed geometry. We also show that the asymptotic behavior of the amplitude contains at the leading order an oscillatory part proportional to the Regge action for the single 4-simplex in the presence of a cosmological constant. In particular, the cosmological term contains the full-fledged curved volume of the 4-simplex. Interestingly, the volume term stems from the asymptotics of the Chern-Simons action. This can be understood as arising from the relation between Chern-Simons theory on the boundary of a region, and a theory defined by an F^{2} action in the bulk. Another peculiarity of our approach is that the sign of the curvature of the reconstructed geometry, and hence of the cosmological constant in the Regge action, is not fixed a priori, but rather emerges semiclassically and dynamically from the solution of the equations of motion. In other words, this work suggests a relation between 4-dimensional loop quantum gravity with a cosmological constant and SL(2,C) Chern-Simons theory in 3-dimensions with knotted graph defects.